Câu hỏi:
Chóp S.ABCD, \(SA\bot \left( ABCD \right),\,SA=a,\,\,ABCD\) là hình vuông cạnh a tâm O. Tính \(\widehat{\left( SO;\left( SBC \right) \right)}\) ?
Phương pháp giải:
Lời giải chi tiết:
* Vẽ giả tưởng \(OH\bot \left( SBC \right)\Rightarrow \widehat{\left( SO;\left( SBC \right) \right)}=\widehat{\left( SO;SH \right)}=\widehat{OSH}\).
* Tính
+ Tam giác vuông SAO : \(AO=\frac{a\sqrt{2}}{2}\Rightarrow SO=\sqrt{{{a}^{2}}+\frac{2{{a}^{2}}}{4}}=\frac{a\sqrt{6}}{2}\)
+ \(OH=d\left( O;\left( SBC \right) \right)=\frac{1}{2}d\left( A;\left( SBC \right) \right)=\frac{1}{2}AK=\frac{1}{2}\frac{a\sqrt{2}}{2}=\frac{a\sqrt{2}}{4}\)
+ Tam giác vuông SHO : \(\sin \widehat{OSH}=\frac{OH}{SO}=\frac{a\sqrt{2}}{4}:\frac{a\sqrt{6}}{2}=\frac{1}{2\sqrt{3}}\).
Chọn đáp án B.