Câu hỏi:
a) Tính: A=(23−√5+12−√5−102√5).(1−3√5)
b) Rút gọn biểu thức sau: P=√x2√x−3+√x−22√x+3+15−4√x9−4x (với x≥0;x≠94)
Phương pháp giải:
Lời giải chi tiết:
a) Ta có:
A=(23−√5+12−√5−102√5).(1−3√5)=(2(3+√5)(3−√5)(3+√5)+1.(2+√5)(2+√5)(2−√5)−5√5).(1−3√5)=(2(3+√5)4+2+√5−1−√5).(1−3√5)=(3+√52−2+√51−√5).(1−3√5)=(3+√5−2(2+√5)−2√52).(1−3√5)=(3+√5−4−2√5−2√52).(1−3√5)=−(−1−3√52).(3√5−1)=(3√5+12).(3√5−1)=(3√5+1)(3√5−1)2=442=22
b) Ta có:
P=√x2√x−3+√x−22√x+3+15−4√x9−4x=√x2√x−3+√x−22√x+3−15−4√x4x−9=√x2√x−3+√x−22√x+3−15−4√x(2√x−3).(2√x+3)=√x.(2√x+3)+(√x−2).(2√x−3)−(15−4√x)(2√x−3).(2√x+3)=2x+3√x+2x−3√x−4√x+6−15+4√x(2√x−3).(2√x+3)=4x−94x−9=1