Câu hỏi:
Cho dãy số \(\left( {{u}_{n}} \right)\) với \({{u}_{n}}=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left( 2n-1 \right)\left( 2n+1 \right)}\). Tính \(\lim {{u}_{n}}\).
Phương pháp giải:
- Rút gọn dãy số \(\left( {{u}_{n}} \right)\) , tìm số hạng tổng quát của dãy số \(\left( {{u}_{n}} \right)\)
- Tính \(\lim {{u}_{n}}\).
Lời giải chi tiết:
Ta có:
\({{u}_{n}}=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left( 2n-1 \right)\left( 2n+1 \right)}=\frac{1}{2}\left( 1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n-1}-\frac{1}{2n+1} \right)=\frac{1}{2}\left( 1-\frac{1}{2n+1} \right)\)
Do đó:
\(\lim {{u}_{n}}=\lim \frac{1}{2}\left( 1-\frac{1}{2n+1} \right)=\frac{1}{2}.\left( 1-0 \right)=\frac{1}{2}\)
Chọn A.