Câu hỏi:
Tìm số tự nhiên x, biết:
\(\eqalign{& a,195 - 3(x - 5) = 12 \cr & b,{(x - 4)^8}:{3^2} = {9^3} \cr} \)
b) x = 7
b) x = 7
b) x = 8
b) x = 7
Phương pháp giải:
- Áp dụng kiến thức các phép toán cộng, trừ, nhân, chia, và thứ tự thực hiện phép toán: nhân chia trước, cộng trừ sau.
- Sử dụng các phép tính về lũy thừa: \({a^m}.{a^n} = {a^{m + n}};\,\,{a^m}:{a^n} = {a^{m - n}}\,\,\,\left( {m \ge n} \right);\,\,\,{\left( {{a^m}} \right)^n} = {a^{m.n}}.\)
Lời giải chi tiết:
\(\eqalign{& a)\,\,195 - 3(x - 5) = 12 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3(x - 5)\, = 195 - 12 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3(x - 5) = 183 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x - 5 = 183:3 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x - 5 = 61 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x\,\,\,\,\,\,\,\,\,\, = 61 + 5 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x\,\,\,\,\,\,\,\,\,\, = 66. \cr} \) \(\eqalign{ & b)\,\,{(x - 4)^8}:{3^2} = {9^3} \cr & \,\,\,\,\,\,{(x - 4)^8}\,\,\,\,\,\,\,\,\,\,\, = {({3^2})^3}{.3^2} \cr & \,\,\,\,\,\,{(x - 4)^8}\,\,\,\,\,\,\,\,\,\,\, = {3^6}{.3^2} \cr & \,\,\,\,\,\,{(x - 4)^8}\,\,\,\,\,\,\,\,\,\,\, = {3^8} \cr & \,\,\,\,\,\,\,x - 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 3 \cr & \,\,\,\,\,\,\,x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 3 + 4 \cr & \,\,\,\,\,\,\,x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 7. \cr} \)