Câu hỏi:

Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào giá trị của góc nhọn \(\alpha \).

a) \({\left( {\cos \alpha  - \sin \alpha } \right)^2} + {\left( {\cos \alpha  + \sin \alpha } \right)^2}\)

b) \(\frac{{{{(c{\rm{os}}\alpha  - \sin \alpha )}^2} - {{(c{\rm{os}}\alpha  + \sin \alpha )}^2}}}{{c{\rm{os}}\alpha .\sin \alpha }}\)


Phương pháp giải:

Sử dụng công thức lượng giác: \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\)

Sử dụng hằng đẳng thức.

Lời giải chi tiết:

a) \({\left( {\cos \alpha  - {\rm{sin}}\alpha } \right)^2} + {\left( {\cos \alpha  - {\rm{sin}}\alpha } \right)^2}\)

\(\begin{array}{l}{\left( {\cos \alpha  - {\rm{sin}}\alpha } \right)^2} + {\left( {\cos \alpha  + {\rm{sin}}\alpha } \right)^2}\\ = {\cos ^2}\alpha  - 2{\rm{sin}}\alpha .\cos \alpha  + {\rm{si}}{{\rm{n}}^2}\alpha  + {\cos ^2}\alpha  + 2{\rm{sin}}\alpha \cos \alpha  + {\rm{si}}{{\rm{n}}^2}\alpha \\ = 2{\rm{si}}{{\rm{n}}^2}\alpha  + 2{\cos ^2}\alpha  = 2\left( {{\rm{si}}{{\rm{n}}^2}\alpha  + {{\cos }^2}\alpha } \right) = 2.1 = 2.\end{array}\)

Vậy giá trị của các biểu thức trên không phụ thuộc vào giá trị của góc nhọn \(\alpha \).

b. \(\frac{{{{\left( {\cos \alpha  - \sin \alpha } \right)}^2} - {{\left( {\cos \alpha  + \sin \alpha } \right)}^2}}}{{\cos \alpha .\sin \alpha }}\)

\(\begin{array}{l}\frac{{{{\left( {\cos \alpha  - \sin \alpha } \right)}^2} - {{\left( {\cos \alpha  + \sin \alpha } \right)}^2}}}{{\cos \alpha .\sin \alpha }}\\ = \frac{{{{\cos }^2}\alpha  - 2\sin \alpha .\cos \alpha  + {{\sin }^2}\alpha  - {{\cos }^2}\alpha  - 2\sin \alpha \cos \alpha  - {{\sin }^2}\alpha }}{{\cos \alpha .\sin \alpha }}\\ = \frac{{ - 4\sin \alpha \cos \alpha }}{{\cos \alpha .\sin \alpha }} =  - 4.\end{array}\)

Vậy giá trị của các biểu thức trên không phụ thuộc vào giá trị của góc nhọn \(\alpha \).


Quảng cáo

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay