Câu hỏi:
Một tam giác vuông có cạnh huyền bằng 5, còn đường cao tương ứng cạnh huyền là 2. Hãy tính cạnh nhỏ nhất của tam giác vuông này.
Phương pháp giải:
Giả sử tam giác đã cho là ΔABC vuông tại A có AB<AC,BC=5,AH=2.
Đặt BH=x(0<x<2,5).
Khi đó áp dụng hệ thức lượng trong tam giác vuông và định lý Pitago để tính x và từ đó suy ra độ dài các cạnh của tam giác.
Lời giải chi tiết:
Giả sử tam giác đã cho là ΔABC vuông tại A có AB<AC,BC=5,AH=2.
Đặt BH=x(0<x<2,5)⇒HC=5−x.
Áp dụng hệ thức lượng trong ΔABC vuông tại A có đường cao AH ta có:
⇒AH2=BH.CH⇔22=x(5−x)
⇔x2−5x+4=0⇔(x−1)(x−4)=0
⇔[x−1=0x−4=0⇔[x=1(tm)x=4(ktm)
⇒AB2=BC.BH=5.1=5⇔AB=√5.
Vậy cạnh nhỏ nhất của tam giác đã cho có độ dài là √5.
Chọn A.