Câu hỏi:
Sóng dừng trên một sợi dây có bước sóng 30 cm có biên độ ở bụng là 4 cm. Giữa hai điểm M, N có biên độ \(2\sqrt 2 \,\,cm\) và các điểm trong khoảng MN luôn dao động với biên độ lớn hơn \(2\sqrt 2 \,\,cm\). Tìm MN
Phương pháp giải:
Biên độ dao động của điểm cách bụng sóng khoảng y: \({A_M} = {A_{bung}}.\left| {\cos \dfrac{{2\pi y}}{\lambda }} \right|\)
Lời giải chi tiết:
Các điểm trong khoảng MN luôn dao động với biên độ lớn hơn \(2\sqrt 2 \,\,cm\) → M và N đối xứng qua bụng sóng
Biên độ dao động của điểm M là:
\(\begin{array}{l}{A_M} = {A_{bung}}.\left| {\cos \dfrac{{2\pi y}}{\lambda }} \right| \Rightarrow 2\sqrt 2 = 4.\left| {\cos \dfrac{{2\pi y}}{{30}}} \right|\\ \Rightarrow y = 3,75\,\,\left( {cm} \right)\end{array}\)
Do M, N đối xứng qua bụng sóng, khoảng cách MN là:
\(MN = 2y = 2.3,75 = 7,5\,\,\left( {cm} \right)\)
Chọn C.