Câu hỏi:

Tìm tập hợp các điểm biểu diễn số phức \(z,\) biết rằng số phức \({z^2}\) có điểm biểu diễn nằm trên trục hoành.

  • A Trục tung
  • B Trục tung
  • C Đường phân giác góc phần tư (I) và góc phần tư (III)
  • D Trục tung và trục hoành

Phương pháp giải:

Phương pháp tìm tập hợp điểm biểu diễn số phức:

Bước 1: Gọi số phức \(z = x + yi\) có điểm biểu diễn là \(M\left( {x;\,\,y} \right).\)

Bước 2: Thay \(z\) vào đề bài \( \Rightarrow \) phương trình:

+) Đường thẳng: \(Ax + By + C = 0.\)

+) Đường tròn: \({x^2} + {y^2} - 2ax - 2by + c = 0.\)

+) Parabol: \(y = a{x^2} + bx + c.\)

+) Elip: \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1.\)

Lời giải chi tiết:

Giả sử \(z = a + bi\,\,\,\left( {a,\,\,b \in \mathbb{R}} \right)\) ta có: \({z^2} = {\left( {a + bi} \right)^2} = {a^2} - {b^2} + 2abi.\)

Số phức \({z^2}\) có điểm biểu diễn nằm trên trục hoành \( \Leftrightarrow 2ab = 0 \Leftrightarrow \left[ \begin{array}{l}a = 0\\b = 0\end{array} \right..\)

Chọn  D.


Quảng cáo

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay