Câu hỏi:
Trong mặt phẳng phức, tập hợp các điểm biểu diễn các số phức \(z\) thỏa mãn \(\dfrac{z}{{z - 1}}\) là số thuần ảo là:
Phương pháp giải:
Cho số phức \(z = x + yi\;\;\left( {x,\;y \in \mathbb{R}} \right) \Rightarrow M\left( {x;\;y} \right)\) là điểm biểu diễn số phức \(z.\)
Lời giải chi tiết:
Gọi số phức \(z = x + yi\,\,\,\left( {x,\,\,y \in \mathbb{R}} \right).\)
\(\begin{array}{l} \Rightarrow \dfrac{z}{{z - 1}} = \dfrac{{x + yi}}{{x + yi - 1}} = \dfrac{{x + yi}}{{\left( {x - 1} \right) + yi}}\\ = \dfrac{{\left( {x + yi} \right)\left[ {\left( {x - 1} \right) - yi} \right]}}{{{{\left( {x - 1} \right)}^2} - {{\left( {yi} \right)}^2}}} = \dfrac{{x\left( {x - 1} \right) + {y^2} + \left( { - xy + xy - y} \right)i}}{{{{\left( {x - 1} \right)}^2} + {y^2}}}\\ = \dfrac{{{x^2} - x + {y^2}}}{{{{\left( {x - 1} \right)}^2} + {y^2}}} - \dfrac{{yi}}{{{{\left( {x - 1} \right)}^2} + {y^2}}}.\end{array}\)
Theo đề bài ta có: \(\dfrac{z}{{z - 1}}\) là số thuần ảo
\( \Rightarrow \left\{ \begin{array}{l}{x^2} - x + {y^2} = 0\\{\left( {x - 1} \right)^2} + {y^2} \ne 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 2x.\dfrac{1}{2} + \dfrac{1}{4} + {y^2} - \dfrac{1}{4} = 0\\x - 1 \ne 0\\y \ne 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{\left( {x - \dfrac{1}{2}} \right)^2} + {y^2} = \dfrac{1}{4}\\x \ne 1\\y \ne 0\end{array} \right.\)
Vậy tập hợp các điểm biểu diễn số phức \(z\) thỏa mãn yêu cầy bài toán là đường tròn tâm \(I\left( {\dfrac{1}{2};\,\,0} \right)\) bán kính \(\dfrac{1}{2}\) trừ điểm \(A\left( {1;\,\,0} \right).\)
Chọn D.