Câu hỏi:

Tìm m để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}m{x^2} + x\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x > 2\\\sqrt {3 - x}  + 3m\,\,\,khi\,\,x \le 2\end{array} \right.\) liên tục trên \(\mathbb{R}\).

  • A \(1\).                                        
  • B \( - 1\).                                    
  • C \(3\).                                        
  • D \(2\).

Phương pháp giải:

Hàm số \(y = f(x)\) liên tục tại \({x_0} \Leftrightarrow \mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = f\left( {{x_0}} \right)\) .

Lời giải chi tiết:

Ta có: \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 4m + 2;\,\,\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right) = 1 + 3m\).

Hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R} \Leftrightarrow \) Hàm số \(f\left( x \right)\) liên tục tại \(x = 2\)

\( \Leftrightarrow \mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} f(x) = f\left( 2 \right) \Leftrightarrow 4m + 2 = 1 + 3m \Leftrightarrow m =  - 1\).

Chọn: B


Quảng cáo

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay