Câu 63 đến câu 71 trang 179-182 SGK Đại số và Giải tích 11 Nâng caoHãy chọn kết quả đúng trong các kết quả đã cho. Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Hãy chọn kết quả đúng trong các kết quả đã cho. Câu 63 a. \(\lim {{n - 2\sqrt n \sin 2n} \over {2n}}\) là : A. 1 B. \({1 \over 2}\) C. -1 D. 0 b. \(\lim {{{n^2} - 3{n^3}} \over {2{n^3} + 5n - 2}}\) là : A. \({1 \over 2}\) B. \({1 \over 5}\) C. \({-3 \over 2}\) D. 0 c.\(\lim {{{3^n} - 1} \over {{2^n} - {2}.3^n + 1}}\) là : A. \({-1 \over 2}\) B. \({3 \over 2}\) C. \({1 \over 2}\) D. -1 d.\(\lim \left( {2n - 3{n^3}} \right)\) là : A. +∞ B. −∞ C. 2 D. -3 Lời giải chi tiết: a. \(\eqalign{& \lim {{n - 2\sqrt n \sin 2n} \over {2n}} = \lim \left( {{1 \over 2} - {{\sin 2n} \over {\sqrt n }}} \right) = {1 \over 2} \cr & \text{vì }\,\left| {{{\sin 2n} \over {\sqrt n }}} \right| \le {1 \over {\sqrt n }},\lim {1 \over {\sqrt n }} = 0. \cr} \) Chọn B b. \(\lim {{{n^2} - 3{n^3}} \over {2{n^3} + 5n - 2}} = \lim {{{1 \over n} - 3} \over {2 + {5 \over {{n^2}}} - {2 \over {{n^3}}}}} = - {3 \over 2}.\) Chọn C c. \(\lim {{{3^n} - 1} \over {{2^n} - {{2.3}^n} + 1}} = \lim {{1 - {{\left( {{1 \over 3}} \right)}^n}} \over {{{\left( {{2 \over 3}} \right)}^n} - 2 + {{\left( {{1 \over 3}} \right)}^n}}} = - {1 \over 2}\) Chọn A d. \(\lim \left( {2n - 3{n^3}} \right) = \lim {n^3}\left( {{2 \over {{n^2}}} - 3} \right) = - \infty \) Chọn B Câu 64 a.\(\lim {{{n^3} - 2n} \over {1 - 3{n^2}}}\) là : A. \({-1 \over 3}\) B. \({2 \over 3}\) C. +∞ D. −∞ b. \(\lim \left( {{2^n} - {5^n}} \right)\) là : A. +∞ B. 1 C. −∞ D. \({5 \over 2}\) c.\(\lim \left( {\sqrt {n + 1} - \sqrt n } \right)\) là : A. +∞ B. −∞ C. 0 D. 1 d.\(\lim {1 \over {\sqrt {{n^2} + n} - n}}\) là : A. +∞ B. 0 C. 2 D. -2 Lời giải chi tiết: a. \(\lim {{{n^3} - 2n} \over {1 - 3{n^2}}} = \lim {{1 - {2 \over {{n^2}}}} \over {{1 \over {{n^3}}} - {3 \over n}}} = - \infty \) Chọn D b. \(\lim \left( {{2^n} - {5^n}} \right) = \lim {5^n}\left[ {{{\left( {{2 \over 5}} \right)}^n} - 1} \right] = - \infty \) Chọn C c. \(\lim \left( {\sqrt {n + 1} - \sqrt n } \right) = \lim {1 \over {\sqrt {n + 1} + \sqrt n }} = 0\) Chọn C d. \(\lim {1 \over {\sqrt {{n^2} + n} - n}} = \lim {{\sqrt {{n^2} + n} + n} \over n} \) \(= \lim \left( {\sqrt {1 + {1 \over n}} + 1} \right) = 2\) Chọn C Câu 65 a.\(\lim {{1 - {2^n}} \over {{3^n} + 1}}\) là : A. \({-2 \over 3}\) B. 0 C. 1 D. \({1 \over 2}\) b. Tổng của cấp số nhân vô hạn \( - {1 \over 2},{1 \over 4}, - {1 \over 8},...,{{{{\left( { - 1} \right)}^n}} \over {{2^n}}},...\) Là : A. \({-1 \over 4}\) B. \({1 \over 2}\) C. -1 D. \({-1 \over 3}\) c. Số thập phân vô hạn tuần hoàn 0,5111… được biểu diễn bởi phân số : A. \({6 \over 11}\) B. \({46 \over 90}\) C. \({43 \over 90}\) D. \({47 \over 90}\) Lời giải chi tiết: a. \(\lim {{1 - {2^n}} \over {{3^n} + 1}} = \lim {{{{\left( {{1 \over 3}} \right)}^n} - {{\left( {{2 \over 3}} \right)}^n}} \over {1 + {{\left( {{1 \over 3}} \right)}^n}}} = 0\) Chọn B b. Công bội \(q = {{{u_2}} \over {{u_1}}} = {1 \over 4}:\left( { - {1 \over 2}} \right) = - {1 \over 2}\) \(S = {{{u_1}} \over {1 - q}} = {{ - {1 \over 2}} \over {1 + {1 \over 2}}} = - {1 \over 3}\) Chọn D c. \(\eqalign{ Chọn B Câu 66 a. Trong bốn giới hạn sau đây giới hạn nào là -1 ? A. \(\lim {{2n + 3} \over {2 - 3n}}\) B. \(\lim {{{n^2} - {n^3}} \over {2{n^3} + 1}}\) C. \(\lim {{{n^2} + n} \over { - 2n - {n^2}}}\) D. \(\lim {{{n^3}} \over {{n^2} + 3}}\) b. Trong bốn giới hạn sau đây, giới hạn nào là +∞ ? A. \(\lim {{{n^2} - 3n + 2} \over {{n^2} + n}}\) B. \(\lim {{{n^3} + 2n - 1} \over {n - 2{n^3}}}\) C. \(\lim {{2{n^2} - 3n} \over {{n^3} + 3n}}\) D. \(\lim {{{n^2} - n + 1} \over {2n - 1}}\) c. Trong bốn giới hạn sau đây, giới hạn nào là 0 ? A. \(\lim {{{2^n} + 1} \over {{{3.2}^n} - {3^n}}}\) B. \(\lim {{{2^n} + 3} \over {1 - {2^n}}}\) C. \(\lim {{1 - {n^3}} \over {{n^2} + 2n}}\) D. \(\lim {{\left( {2n + 1} \right){{\left( {n - 3} \right)}^2}} \over {n - 2{n^3}}}\) Lời giải chi tiết: a. \(\eqalign{ Chọn C b. \(\eqalign{ Chọn D c. \(\eqalign{ Chọn A Câu 67 Hãy chọn kết quả đúng trong các kết quả sau đây : a.\(\mathop {\lim }\limits_{x \to - 1} {{{x^2} - 3} \over {{x^3} + 2}}\) là : A. 2 B. 1 C. -2 D. \( - {3 \over 2}\) b.\(\mathop {\lim }\limits_{x \to 3} \sqrt {{{{x^2}} \over {{x^3} - x - 6}}} \) là : A. \( {1 \over 2}\) B. 2 C. 3 D. \({{\sqrt 2 } \over 2}\) c.\(\mathop {\lim }\limits_{x \to - 4} {{{x^2} + 3x - 4} \over {{x^2} + 4x}}\) là : A. \( {5 \over 4}\) B. 1 C. \( - {5 \over 4}\) D. -1 Lời giải chi tiết: a. \(\mathop {\lim }\limits_{x \to - 1} {{{x^2} - 3} \over {{x^3} + 2}} = {{1 - 3} \over { - 1 + 2}} = - 2\) Chọn C b. \(\mathop {\lim }\limits_{x \to 3} \sqrt {{{{x^2}} \over {{x^3} - x - 6}}} = \sqrt {{9 \over {27 - 3 - 6}}} = {{\sqrt 2 } \over 2}\) Chọn D c. \(\mathop {\lim }\limits_{x \to - 4} {{{x^2} + 3x - 4} \over {{x^2} + 4x}} = \mathop {\lim }\limits_{x \to - 4} {{\left( {x - 1} \right)\left( {x + 4} \right)} \over {x\left( {x + 4} \right)}} = \mathop {\lim }\limits_{x \to - 4} {{x - 1} \over x} = {5 \over 4}\) Chọn A. Câu 68 Hãy chọn kết quả đúng trong các kết quả sau đây : a.\(\mathop {\lim }\limits_{x \to + \infty } {{2{x^2} - 3} \over {{x^6} + 5{x^5}}}\) là : A. 2 B. 0 C. \( - {3 \over 5}\) D. -3 b.\(\mathop {\lim }\limits_{x \to - \infty } {{ - 3{x^5} + 7{x^3} - 11} \over {{x^5} + {x^4} - 3x}}\) là : A. 0 B. -3 C. 3 D. -∞ c.\(\mathop {\lim }\limits_{x \to - \infty } {{ - 2{x^5} + {x^4} - 3} \over {3{x^2} - 7}}\) là : A. −∞ B. -2 C. 0 D. +∞ Lời giải chi tiết: a. \(\mathop {\lim }\limits_{x \to + \infty } {{2{x^2} - 3} \over {{x^6} + 5{x^5}}} = \mathop {\lim }\limits_{x \to + \infty } {{{2 \over {{x^4}}} - {3 \over {{x^6}}}} \over {1 + {5 \over x}}} = 0\) Chọn B b. \(\mathop {\lim }\limits_{x \to - \infty } {{ - 3{x^5} + 7{x^3} - 11} \over {{x^5} + {x^4} - 3x}} = \mathop {\lim }\limits_{x \to - \infty } {{ - 3 + {7 \over {{x^2}}} - {{11} \over {{x^5}}}} \over {1 + {1 \over x} - {3 \over {{x^4}}}}} = - 3\) Chọn B c. \(\mathop {\lim }\limits_{x \to - \infty } {{ - 2{x^5} + {x^4} - 3} \over {3{x^2} - 7}} = \mathop {\lim }\limits_{x \to - \infty } {{ - 2 + {1 \over x} - {3 \over {{x^5}}}} \over {{3 \over {{x^3}}} - {7 \over {{x^5}}}}} = + \infty \) Chọn D Câu 69 Hãy chọn kết quả đúng trong các kết quả sau đây a.\(\mathop {\lim }\limits_{x \to + \infty } {{x - 1} \over {\sqrt {{x^2} - 1} }}\) là : A. 1 B. -1 C. 0 D. +∞ b.\(\mathop {\lim }\limits_{x \to 0} {{\sqrt {1 - x} - 1} \over x}\) là : A. \({1 \over 2}\) B. \(-{1 \over 2}\) C. +∞ D. 0 c.\(\mathop {\lim }\limits_{x \to 1} {{2x - 1} \over {{{\left( {x - 1} \right)}^2}}}\) là : A. 2 B. -1 C. +∞ D. −∞ d.\(\mathop {\lim }\limits_{x \to - 1} {{{x^2} + x} \over {{x^2} + 3x + 2}}\) là A. 2 B. \({2 \over 3}\) C. -1 D. 0 Lời giải chi tiết: a. \(\mathop {\lim }\limits_{x \to + \infty } {{x - 1} \over {\sqrt {{x^2} - 1} }} = \mathop {\lim }\limits_{x \to + \infty } {{1 - {1 \over x}} \over {\sqrt {1 - {1 \over {{x^2}}}} }} = 1\) Chọn A b. \(\mathop {\lim }\limits_{x \to 0} {{\sqrt {1 - x} - 1} \over x} = \mathop {\lim }\limits_{x \to 0} {{ - x} \over {x\left( {\sqrt {1 - x} + 1} \right)}} = \mathop {\lim }\limits_{x \to 0} {{ - 1} \over {\sqrt {1 - x} + 1}} = - {1 \over 2}\) Chọn B c. \(\mathop {\lim }\limits_{x \to 1} {{2x - 1} \over {{{\left( {x - 1} \right)}^2}}} = + \infty \) Chọn C d. \(\mathop {\lim }\limits_{x \to - 1} {{{x^2} + x} \over {{x^2} + 3x + 2}} = \mathop {\lim }\limits_{x \to - 1} {{x\left( {x + 1} \right)} \over {\left( {x + 1} \right)\left( {x + 2} \right)}} = \mathop {\lim }\limits_{x \to - 1} {x \over {x + 2}} = - 1\) Chọn C Câu 70 a. Trong bốn giới hạn sau đây, giới hạn nào là -1 ? A. \(\mathop {\lim }\limits_{x \to + \infty } {{2{x^2} + x - 1} \over {3x + {x^2}}}\) B. \(\mathop {\lim }\limits_{x \to - \infty } {{2x + 3} \over {{x^2} - 5x}}\) C. \(\mathop {\lim }\limits_{x \to + \infty } {{{x^3} - {x^2} + 3} \over {5{x^2} - {x^3}}}\) D. \(\mathop {\lim }\limits_{x \to - \infty } {{{x^2} - 1} \over {x + 1}}\) b. Trong bốn giới hạn sau đây, giới hạn nào là 0 ? A. \(\mathop {\lim }\limits_{x \to 1} {{x - 1} \over {{x^3} - 1}}\) B. \(\mathop {\lim }\limits_{x \to - 2} {{2x + 5} \over {x + 10}}\) C. \(\mathop {\lim }\limits_{x \to 1} {{{x^2} - 1} \over {{x^2} - 3x + 2}}\) D. \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 1} - x} \right)\) c. Trong bốn giới hạn sau đây, giới hạn nào không tồn tại ? A. \(\mathop {\lim }\limits_{x \to - \infty } {{2x + 1} \over {{x^2} + 1}}\) B. \(\mathop {\lim }\limits_{x \to + \infty } \cos x\) C. \(\mathop {\lim }\limits_{x \to 0} {x \over {\sqrt {x + 1} }}\) D. \(\mathop {\lim }\limits_{x \to - 1} {x \over {{{\left( {x + 1} \right)}^2}}}\) Lời giải chi tiết: a. \(\eqalign{ Chọn C b. \(\eqalign{ Chọn D c. \(\eqalign{ Không tồn tại \(\mathop {\lim }\limits_{x \to + \infty } \cos x\) (chọn 2 dãy \({x_n} = 2n\pi \) và \(x{'_n} = {\pi \over 2} + 2n\pi \);\(\;\mathop {\lim }\limits\cos x{'_n} = 0\);\(\;\mathop {\lim }\limits\cos x{_n} = 1\)) Chọn B. Câu 71 Tìm khẳng định đúng trong các khẳng định sau : Hàm số \(f\left( x \right) = \left\{ {\matrix{{{{{x^2}} \over x}\,\text{ với }\,x < 1,x \ne 0} \cr {0\,\text{ với }\,x = 0} \cr {\sqrt x \,\text{ với }\,x \ge 1} \cr} } \right.\) A. Liên tục tại mọi điểm trừ các điểm x thuộc đoạn [0 ; 1] B. Liên tục tại mọi điểm thuộc \(\mathbb R\). C. Liên tục tại mọi điểm trừ điểm x = 0 D. Liên tục tại mọi điểm trừ điểm x = 1. Lời giải chi tiết: Tập xác định \(D =\mathbb R\) f liên tục trên \(\left( { - \infty ;0} \right);\left( {0;1} \right)\,va\,\left( {1; + \infty } \right)\) Tại x = 0 \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} {{{x^2}} \over x} = \mathop {\lim }\limits_{x \to 0} x = 0 = f\left( 0 \right)\) Suy ra f liên tục tại x = 0 Tại x = 1 \(\mathop {\lim }\limits_{x \to {1^ - }} = \mathop {\lim }\limits_{x \to {1^ - }} {{{x^2}} \over x} = 1\) \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \sqrt x = 1 = f\left( 1 \right)\) Vậy f liên tục tại \(x = 1\) nên f liên tục tại mọi điểm thuộc \(\mathbb R\). Chọn B Loigiaihay.com
Quảng cáo
|