Câu 55 trang 124 Sách bài tập Hình học 11 Nâng cao

Giải bài tập Câu 55 trang 124 Sách bài tập Hình học 11 Nâng cao

Quảng cáo

Đề bài

Cho hình lăng trụ tam giác đều ABC.A’B’C’ có tất cả các cạnh bằng a. Gọi C1 là trung điểm của CC’.

a) Tính góc giữa hai đường thẳng C1B và A’B’. Tính góc giữa hai mặt phẳng (C1AB) và (ABC).

b) Chứng minh rằng hình chóp C1.ABB’A’ là hình chóp tứ giác đều.

c) Một mặt phẳng (P) chứa cạnh AB, tạo với mặt phẳng đáy (ABC) góc φ và cắt hình lăng trụ đã cho theo hình có diện tích khác không. Tính diện tích thiết diện đó theo a và φ.

Lời giải chi tiết

 

a) (Hình 1) Vì AB // A’B’ nên góc giữa C1B và A’B’ là góc giữa C1B và AB. Dễ thấy AC1 = BC1 nên AC1B là tam giác cân. Từ đó \(\widehat {AB{C_1}} < {90^0}\). Vậy góc giữa AB và AC1 là \(\widehat {AB{C_1}}\). Gọi M là trung điểm của AB thì:

\(MB = {a \over 2},B{C_1} = {{a\sqrt 5 } \over 2},MB \bot M{C_1}\).

Từ đó \(\cos \widehat {{C_1}BA} = {{MB} \over {{C_1}B}} = {1 \over {\sqrt 5 }}\).

Cũng từ kết quả trên, ta có \(\left( {{C_1}MC} \right) \bot AB\) và C1MC là tam giác vuông tại C nên góc giữa mp(C1AB) và (CAB) là \(\widehat {{C_1}MC}\).

Ta có \(\tan \widehat {{C_1}MC} = {{{C_1}C} \over {MC}} = {{{a \over 2}} \over {{{a\sqrt 3 } \over 2}}} = {1 \over {\sqrt 3 }}\).

Vậy \(\widehat {{C_1}MC} = {30^0}\) hay góc giữa mp(C1AB) và mp(ABC) bằng 30°.

b) ABB’A’ là hình vuông. Dễ thấy \({C_1}A = {C_1}B = {C_1}A' = {C_1}B' = {{a\sqrt 5 } \over 2}\).

Khi đó \({C_1}O \bot AB',{C_1}O \bot A'B\left( {O = A'B \cap AB'} \right)\).

Vậy C1.ABB’A’ là hình chóp tứ giác đều.

c) Trong mp(M, CC’) kẻ tia Mt sao cho \(\widehat {CMt} = \varphi \) thì mp(AB, Mt) chính là mặt phẳng (P) phải tìm.

- Nếu \({0^0} \le \varphi  \le \widehat {C'MC}\) thì thiết diện là tam giác ABN (Hình 2)

Khi đó:

\(\eqalign{  & {S_{ABN}} = {1 \over 2}AB.MN  \cr  & AB = a,MN = {{MC} \over {\cos \varphi }} = {{a\sqrt 3 } \over {2\cos \varphi }} \cr} \)

Vậy \({S_{ABN}} = {{{a^2}\sqrt 3 } \over {4\cos \varphi }}\)

 

- Nếu \(\widehat {C'MC} < \varphi  < {90^0}\) thì thiết diện là hình thang cân ABEF (Hình 3).

Khi đó \({S_{ABEF}} = {S_{ABN}} - {S_{EFN}}\).

Ta có

\(\eqalign{  & {S_{ABN}} = {{{a^2}\sqrt 3 } \over {4\cos \varphi }}  \cr  & {{{S_{EFN}}} \over {{S_{ABN}}}} = {\left( {{{NE} \over {NB}}} \right)^2} = {\left( {{{NC'} \over {NC}}} \right)^2}  \cr  &  = {{{{\left( {{{a\sqrt 3 } \over 2}\tan \varphi  - a} \right)}^2}} \over {{{\left( {{{a\sqrt 3 } \over 2}\tan \varphi } \right)}^2}}} = {{{{\left( {\sqrt 3 \tan \varphi  - 2} \right)}^2}} \over {3{{\tan }^2}\varphi }} \cr} \)

Vậy \({S_{EFN}} = {{{a^2}\sqrt 3 } \over {4\cos \varphi }}.{{{{\left( {\sqrt 3 \tan \varphi  - 2} \right)}^2}} \over {3{{\tan }^2}\varphi }}\)

Từ đó

\(\eqalign{  & {S_{ABEF}} = {{{a^2}\sqrt 3 } \over {4.\cos \varphi }}.\left[ {1 - {{{{\left( {\sqrt 3 \tan \varphi  - 2} \right)}^2}} \over {3{{\tan }^2}\varphi }}} \right]  \cr  &  = {{{a^2}\sqrt 3 } \over {12{{\tan }^2}\varphi \cos \varphi }}.\left( {4\sqrt 3 \tan \varphi  - 4} \right)  \cr  &  = {{{a^2}\sqrt 3 } \over {3\tan \varphi .\sin \varphi }}\left( {\sqrt 3 \tan \varphi  - 1} \right) \cr} \)

- Nếu \(\varphi  = {90^0}\) thì thiết diện là hình vuông ABB’A’. Khi đó diện tích thiết diện bằng a2.

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close