Câu 5.1 trang 178 sách bài tập Đại số và Giải tích 11 Nâng caoCho hàm số, chứng minh rằng Quảng cáo
Đề bài Cho hàm số \(y = \root 3 \of x \) Chứng minh rằng: \(y'\left( x \right) = {1 \over {3\root 3 \of {{x^2}} }}\,\,\left( {x \ne 0} \right)\) Lời giải chi tiết Với mỗi \(a \ne 0,\) ta tính đạo hàm của hàm số \(y = \root 3 \of x \) tại điểm theo định nghĩa - Tính \(\Delta y\) \(\Delta y = \root 3 \of {x + \Delta x} - \root 3 \of x \) \(= {{\Delta x} \over {\root 3 \of {{{\left( {x + \Delta x} \right)}^2}} + \root 3 \of {x\left( {x + \Delta x} \right)} + \root 3 \of {{x^2}} }} \) - Tìm giới hạn \(\mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} {1 \over {\root 3 \of {\left( {x + \Delta x} \right)^2} + \root 3 \of {x\left( {x + \Delta x} \right) + \root 3 \of {{x^2}} } }} = {1 \over {3\root 3 \of {{x^2}} }} \) \(= y'\left( x \right)\) Loigiaihay.com
Quảng cáo
|