Câu 51 trang 175 SGK Đại số và Giải tích 11 Nâng caoGiải thích vì sao : Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Giải thích vì sao : LG a Hàm số \(f\left( x \right) = {x^2}\sin x - 2{\cos ^2}x + 3\) liên tục trên \(\mathbb R\). Lời giải chi tiết: Với mọi \(x_0\in \mathbb R\), ta có: \(\mathop {\lim }\limits_{x \to {x_0}} {x^2} = x_0^2,\mathop {\lim }\limits_{x \to {x_0}}\sin x= \sin {x_0}\) \(\text{ và }\,\mathop {\lim }\limits_{x \to {x_0}} \cos x = \cos {x_0}\) (vì các hàm số y = sinx và y = cosx liên tục trên R) Do đó : \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2}{\mathop{\rm sinx}\nolimits} - 2co{s^2}x + 3} \right) \) \(= x_0^2\sin {x_0} - 2{\cos ^2}{x_0} + 3 = f\left( {{x_0}} \right)\) Vậy hàm số f liên tục tại mọi điểm \(x_0\in\mathbb R\). Do đó hàm số f liên tục trên \(\mathbb R\). LG b Hàm số \(g\left( x \right) = {{{x^3} + x\cos x + \sin x} \over {2\sin x + 3}}\) liên tục trên \(\mathbb R\) Lời giải chi tiết: Tập xác định của g là \(\mathbb R\) Với mọi \(x_0\in\mathbb R\) ta có: \(\mathop {\lim }\limits_{x \to {x_0}} {x^3} = x_0^3,\mathop {\lim }\limits_{x \to {x_0}} \sin x = \sin {x_0},\) \(\mathop {\lim }\limits_{x \to {x_0}} \cos x = \cos {x_0}\) Do đó \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = {{x_0^3 + {x_0}\cos {x_0} + \sin {x_0}} \over {2\sin {x_0} + 3}} = g\left( {{x_0}} \right)\) Vậy hàm số g liên tục tại mọi \(x_0\in\mathbb R\). Do đó g liên tục trên \(\mathbb R\). LG c Hàm số \(h\left( x \right) = {{\left( {2x + 1} \right)\sin x - {{\cos }^3}x} \over {x\sin x}}\) liên tục tại mọi điểm \(x ≠ kπ, k \in\mathbb Z\). Lời giải chi tiết: Loigiaihay.com
Quảng cáo
|