tuyensinh247

Câu 50 trang 48 SGK Đại số và Giải tích 11 Nâng cao

Cho phương trình

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Cho phương trình  \({{{{\sin }^3}x + {{\cos }^3}x} \over {2\cos x - \sin x}} = \cos 2x.\)

LG a

Chứng minh rằng \(x = {\pi \over 2} + k\pi \) nghiệm đúng phương trình.

Lời giải chi tiết:

Ta có: \(\sin \left( {\frac{\pi }{2} + k\pi } \right) = {\left( { - 1} \right)^k}\)

(nghĩa là bằng 1 nếu k chẵn, bằng -1 nếu k lẻ)

Thay \(x = {\pi \over 2} + k\pi \) vào phương trình ta được :

\(\begin{array}{l}
\frac{{{{\sin }^3}\left( {\frac{\pi }{2} + k\pi } \right) + {{\cos }^3}\left( {\frac{\pi }{2} + k\pi } \right)}}{{2\cos \left( {\frac{\pi }{2} + k\pi } \right) - \sin \left( {\frac{\pi }{2} + k\pi } \right)}} = \cos \left[ {2\left( {\frac{\pi }{2} + k\pi } \right)} \right]\\
\Leftrightarrow \frac{{{{\left( { - 1} \right)}^{3k}} + 0}}{{2.0 - {{\left( { - 1} \right)}^k}}} = \cos \left( {\pi + k2\pi } \right)\\
\Leftrightarrow \frac{{{{\left( { - 1} \right)}^{3k}}}}{{ - {{\left( { - 1} \right)}^k}}} = \cos \pi \\
\Leftrightarrow - {\left( { - 1} \right)^{2k}} = - 1\\
\Leftrightarrow - 1 = - 1
\end{array}\)

Vậy \(x = {\pi \over 2} + k\pi \) là nghiệm phương trình

LG b

Giải phương trình bằng cách đặt \(\tan x = t\) (khi \(x \ne {\pi \over 2} + k\pi \) )

Lời giải chi tiết:

* \(x = {\pi \over 2} + k\pi \) là nghiệm phương trình.

* Với \(x \ne {\pi \over 2} + k\pi \) chia tử và mẫu của vế trái cho \({\cos ^3}x\) ta được :

\({{{{\tan }^3}x + 1} \over {2\left( {1 + {{\tan }^2}x} \right) - \tan x\left( {1 + {{\tan }^2}x} \right)}} = {{1 - {{\tan }^2}x} \over {1 + {{\tan }^2}x}}\) 

Đặt \(t = \tan x\) ta được :

\(\eqalign{& {{{t^3} + 1} \over {\left( {2 - t} \right)\left( {1 + {t^2}} \right)}} = {{1 - {t^2}} \over {1 + {t^2}}} \cr & \Leftrightarrow {t^3} + 1 = \left( {{t^2} - 1} \right)\left( {t - 2} \right) \cr & \Leftrightarrow {t^3} + 1 = {t^3} - 2{t^2} - t + 2 \cr & \Leftrightarrow 2{t^2} + t - 1 = 0 \Leftrightarrow \left[ {\matrix{
{t = - 1} \cr {t = {1 \over 2}} \cr} } \right. \cr & \Leftrightarrow \left[ {\matrix{{\tan x = - 1} \cr {\tan x = {1 \over 2}} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = - {\pi \over 4} + k\pi } \cr {x = \alpha + k\pi } \cr} } \right. \cr & \text{ với }\,\tan \alpha = {1 \over 2} \cr} \)

Vậy phương trình đã cho có nghiệm :\(x = {\pi \over 2} + k\pi ,x = - {\pi \over 4} + k\pi ,\) \(x = \alpha + k\pi \,\left( {k \in\mathbb Z} \right)\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close