Câu 50 trang 221 SGK Đại số và Giải tích 11 Nâng cao

a. Chứng minh rằng

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng \({\left( {{1 \over {{x^n}}}} \right)'} =  - {n \over {{x^{n + 1}}}},\) trong đó n ϵ N*

Giải chi tiết:

 Ta có: \(\left( {{1 \over {{x^n}}}} \right)' =  - {{\left( {{x^n}} \right)'} \over {{x^{2n}}}} = {{ - n{x^{n - 1}}} \over {{x^{2n}}}} =  - {n \over {{x^{n + 1}}}}\)

Với x ≠ 0 và n ϵ N*, ta đặt \({x^{ - n}} = {1 \over {{x^n}}}.\) Từ đó hãy so sánh đẳng thức trong câu a với công thức \(\left( {{x^n}} \right)' = n{x^{n - 1}}\) và nêu nhận xét.

Giải chi tiết:

Ta có: \(\left( {{x^{ - n}}} \right)' =  - n{x^{ - n - 1}}\) (Theo a)

Nhận xét : Công thức \(\left( {{x^n}} \right)' = n{x^{n - 1}}\) đúng với mọi giá trị nguyên của n (chú ý rằng khi n ≤ 0 thì chỉ có thể xét đạo hàm trên \(\left( { - \infty ;0} \right) \cup \left( {0; + \infty } \right)\))

Loigiaihay.com

Quảng cáo

2k7 Tham gia ngay group chia sẻ, trao đổi tài liệu học tập mễn phí

close