Câu 50 trang 221 SGK Đại số và Giải tích 11 Nâng caoa. Chứng minh rằng Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Chứng minh rằng \({\left( {{1 \over {{x^n}}}} \right)'} = - {n \over {{x^{n + 1}}}},\) trong đó n ϵ N* Giải chi tiết: Ta có: \(\left( {{1 \over {{x^n}}}} \right)' = - {{\left( {{x^n}} \right)'} \over {{x^{2n}}}} = {{ - n{x^{n - 1}}} \over {{x^{2n}}}} = - {n \over {{x^{n + 1}}}}\)
Với x ≠ 0 và n ϵ N*, ta đặt \({x^{ - n}} = {1 \over {{x^n}}}.\) Từ đó hãy so sánh đẳng thức trong câu a với công thức \(\left( {{x^n}} \right)' = n{x^{n - 1}}\) và nêu nhận xét. Giải chi tiết: Ta có: \(\left( {{x^{ - n}}} \right)' = - n{x^{ - n - 1}}\) (Theo a) Nhận xét : Công thức \(\left( {{x^n}} \right)' = n{x^{n - 1}}\) đúng với mọi giá trị nguyên của n (chú ý rằng khi n ≤ 0 thì chỉ có thể xét đạo hàm trên \(\left( { - \infty ;0} \right) \cup \left( {0; + \infty } \right)\)) Loigiaihay.com
Quảng cáo
|