Câu 4.59 trang 144 sách bài tập Đại số và Giải tích 11 Nâng caoTìm các giới hạn sau Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Tìm các giới hạn sau LG a \(\mathop {\lim }\limits_{x \to 1} {{\sqrt {x + 3} - 2} \over {x - 1}}\) Lời giải chi tiết: \({1 \over 4};\) LG b \(\mathop {\lim }\limits_{x \to 7} {{2 - \sqrt {x - 3} } \over {{x^2} - 49}}\) Lời giải chi tiết: \( - {1 \over {56}};\) LG c \(\mathop {\lim }\limits_{x \to 3} {{\sqrt {{x^2} - 2x + 6} - \sqrt {{x^2} + 2x - 6} } \over {{x^2} - 4x + 3}}\) Phương pháp giải: Nhân tử và mẫu của phân thức đã cho \(\sqrt {{x^2} - 2x + 6} + \sqrt {{x^2} + 2x - 6} \) và đơn giản phân thức nhận được, ta có \({{\sqrt {{x^2} - 2x + 6} - \sqrt {{x^2} + 2x - 6} } \over {{x^2} - 4x + 3}} = {4 \over {1 - x}}.{1 \over {\sqrt {{x^2} - 2x + 6} + \sqrt {{x^2} + 2x - 6} }}\) với \(x \ne 3.\) Lời giải chi tiết: \( - {1 \over 3}.\) LG d \(\mathop {\lim }\limits_{x \to {3^ - }} {{x - 3} \over {3 - \sqrt {6x - {x^2}} }}\) Lời giải chi tiết: \({{x - 3} \over {3 - \sqrt {6x - {x^2}} }} = {{\left( {x - 3} \right)\left( {3 + \sqrt {6x - {x^2}} } \right)} \over {9 - 6x + {x^2}}} = {{3 + \sqrt {6x - {x^2}} } \over {x - 3}}.\) Vì \(\mathop {\lim }\limits_{x \to {3^ - }} \left( {3 + \sqrt {6x - {x^2}} } \right) = 6 > 0,\mathop {\lim }\limits_{x \to {3^ - }} \left( {x - 3} \right) = 0\) và \(x - 3 < 0\) với mọi \(x < 3\) nên \(\mathop {\lim }\limits_{x \to {3^ - }} {{x - 3} \over {3 - \sqrt {6x - {x^2}} }} = - \infty .\) LG e \(\mathop {\lim }\limits_{x \to 2} {{\sqrt {x + 2} - 2} \over {\sqrt {x + 7} - 3}}\) Lời giải chi tiết: Nhân tử và mẫu của phân thức với \(\left( {\sqrt {x + 2} + 2} \right)\left( {\sqrt {x + 7} + 3} \right),\) ta được \({{\sqrt {x + 2} - 2} \over {\sqrt {x + 7} - 3}} = {{\left( {x - 2} \right)\left( {\sqrt {x + 7} + 3} \right)} \over {\left( {x - 2} \right)\left( {\sqrt {x + 2} + 2} \right)}} = {{\sqrt {x + 7} + 3} \over {\sqrt {x + 2} + 2}}\) với \(x \ne 2.\) Do đó \(\mathop {\lim }\limits_{x \to 2} {{\sqrt {x + 2} - 2} \over {\sqrt {x + 7} - 3}} = \mathop {\lim }\limits_{x \to 2} {{\sqrt {x + 7} + 3} \over {\sqrt {x + 2} + 2}} = {3 \over 2};\) LG f \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {3{x^2} + x + 1} - x\sqrt 3 } \right).\) Lời giải chi tiết: \({{\sqrt 3 } \over 6}.\) Loigiaihay.com
Quảng cáo
|