Câu 38 trang 213 SGK Đại số và Giải tích 11 Nâng cao

Cho hàm số

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Cho hàm số \(y = {\cos ^2}x + m\sin x\) (m là tham số) có đồ thị là (C). Tìm m trong mỗi trường hợp sau:

LG a

Tiếp tuyến của (C) tại điểm với hoành độ \(x = π\) có hệ số góc bằng 1.

Phương pháp giải:

Giải phương trình \(f'(\pi )=1\) tìm m.

Lời giải chi tiết:

Đặt \(f\left( x \right) = {\cos ^2}x + m\sin x,\) ta có :

\(f'\left( x \right) = 2\cos x\left( { - \sin x} \right) + m\cos x\) \(=  - \sin 2x + m\cos x\)

Hệ số góc tiếp tuyến của (C) tại điểm có hoành độ \(x = π\) là :

\(\eqalign{  & f'\left( \pi  \right) =  - \sin 2\pi  + m\cos \pi  =  - m  \cr  & \text{Vậy}\,f'\left( \pi  \right) = 1 \Leftrightarrow m =  - 1 \cr} \)

LG b

Hai tiếp tuyến của (C) tại các điểm có hoành độ \(x =  - {\pi  \over 4}\)  và \(x = {\pi  \over 3}\) song song hoặc trùng nhau.

Phương pháp giải:

Giải phương trình \(f'\left( { - {\pi  \over 4}} \right) = f'\left( {{\pi  \over 3}} \right)\) tìm m.

Lời giải chi tiết:

Theo đề bài, ta có :

\(\eqalign{  & f'\left( { - {\pi  \over 4}} \right) = f'\left( {{\pi  \over 3}} \right)  \cr  &  \Leftrightarrow  - \sin \left( { - {\pi  \over 2}} \right) + m\cos \left( { - {\pi  \over 4}} \right) \cr &=  - \sin {{2\pi } \over 3} + m\cos {\pi  \over 3}  \cr  &  \Leftrightarrow 1 + m{{\sqrt 2 } \over 2} =  - {{\sqrt 3 } \over 2} + {m \over 2} \cr &\Leftrightarrow m = {{\sqrt 3  + 2} \over {1 - \sqrt 2 }} \cr} \)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close