Câu 29 trang 121 SGK Đại số 10 nâng cao

Giải các hệ bất phương trình

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giải các hệ bất phương trình

LG a

\(\left\{ \matrix{
{{5x + 2} \over 3} \ge 4 - x \hfill \cr 
{{6 - 5x} \over {13}} < 3x + 1 \hfill \cr} \right.\)

Phương pháp giải:

Giải từng bất phương trình có trong hệ và kết hợp nghiệm.

Lời giải chi tiết:

Ta có:

\(\eqalign{
& \left\{ \matrix{
{{5x + 2} \over 3} \ge 4 - x \hfill \cr 
{{6 - 5x} \over {13}} < 3x + 1 \hfill \cr} \right.\cr &\Leftrightarrow \left\{ \matrix{5x + 2 \ge 12 - 3x \hfill \cr 6 - 5x < 39x + 13 \hfill \cr} \right. \cr & \Leftrightarrow \left\{ \begin{array}{l}5x + 3x \ge 12 - 2\\- 5x - 39x < 13 - 6\end{array} \right.\cr & \Leftrightarrow \left\{ \matrix{8x \ge 10 \hfill \cr -44x <  7 \hfill \cr} \right. \cr &\Leftrightarrow \left\{ \matrix{x \ge {5 \over 4} \hfill \cr x > - {7 \over {44}} \hfill \cr} \right. \Leftrightarrow x \ge {5 \over 4} \cr} \) 

Vậy \(S = {\rm{[}}{5 \over 4}; + \infty )\)

LG b

\(\left\{ \matrix{
{(1 - x)^2} > 5 + 3x + {x^2} \hfill \cr 
{(x + 2)^3} < {x^3} + 6{x^2} - 7x - 5 \hfill \cr} \right.\)

Lời giải chi tiết:

 Ta có:

\(\eqalign{
& \left\{ \matrix{
{(1 - x)^2} > 5 + 3x + {x^2} \hfill \cr 
{(x + 2)^3} < {x^3} + 6{x^2} - 7x - 5 \hfill \cr} \right. \cr&\Leftrightarrow \left\{ \matrix{
1 - 2x + {x^2} > 5 + 3x + {x^2} \hfill \cr 
{x^3} + 6{x^2} + 12x + 8 < {x^3} + 6{x^2} - 7x - 5 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
5x < - 4 \hfill \cr 
19x < - 13 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x < - {4 \over 5} \hfill \cr 
x < - {{13} \over {19}} \hfill \cr} \right. \cr &\Leftrightarrow x < - {4 \over 5} \cr} \)

Vậy \(S = ( - \infty ; - {4 \over 5})\)

LG c

\(\left\{ \matrix{
{{4x - 5} \over 7}< x + 3 \hfill \cr 
{{3x + 8} \over 4} > 2x - 5 \hfill \cr} \right.\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& \left\{ \matrix{
{{4x - 5} \over 7} < x + 3 \hfill \cr 
{{3x + 8} \over 4} > 2x - 5 \hfill \cr} \right. \cr &\Leftrightarrow \left\{ \matrix{
4x - 5 < 7x + 21 \hfill \cr 
3x + 8 > 8x - 20 \hfill \cr} \right. \cr& \Leftrightarrow \left\{ \begin{array}{l}4x - 7x < 21 + 5\\3x - 8x > - 20 - 8\end{array} \right.\cr &\Leftrightarrow \left\{ \matrix{-3x < 26 \hfill \cr -5x > -28 \hfill \cr} \right. \cr & \Leftrightarrow \left\{ \matrix{x > - {{26} \over 3} \hfill \cr x < {{28} \over 5} \hfill \cr} \right. \cr &\Leftrightarrow - {{26} \over 3} < x < {{28} \over 5} \cr} \)

Vậy \(S = ( - {{26} \over 3};{{28} \over 5})\)

LG d

\(\left\{ \matrix{
x - 1 \le 2x - 3 \hfill \cr 
3x < x + 5 \hfill \cr 
{{5 - 3x} \over 2} \le x - 3 \hfill \cr} \right.\)

Lời giải chi tiết:

Ta có:

\(\left\{ \matrix{
x - 1 \le 2x - 3 \hfill \cr 
3x < x + 5 \hfill \cr 
{{5 - 3x} \over 2} \le x - 3 \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l}
x - 2x \le - 3 + 1\\
3x - x < 5\\
5 - 3x \le 2x - 6
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
- x \le - 2\\
2x < 5\\
- 3x - 2x \le - 6 - 5
\end{array} \right.  \) \(\Leftrightarrow \left\{ \begin{array}{l}
x \ge 2\\
x < \frac{5}{2}\\
- 5x \le - 11
\end{array} \right.  \) \( \Leftrightarrow \left\{ \begin{array}{l}
x \ge 2\\
x < \frac{5}{2}\\
x \ge \frac{{11}}{5}
\end{array} \right.  \) \(\Leftrightarrow \frac{{11}}{5} \le x < \frac{5}{2}\)

Vậy \(S = {\rm{[}}{{11} \over 5};{5 \over 2})\)

Loigioihay.com

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!

close