Câu 25 trang 121 SGK Đại số 10 nâng cao

Giải các bất phương trình

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giải các bất phương trình

LG a

\({{x + 2} \over 3} - x + 1 > x + 3\)

Phương pháp giải:

Quy đồng, khử mẫu.

Lời giải chi tiết:

Ta có:

\(\eqalign{
& {{x + 2} \over 3} - x + 1 > x + 3\cr& \Leftrightarrow x + 2 - 3x + 3 > 3x + 9 \cr 
& \Leftrightarrow - 5x > 4 \Leftrightarrow x < - {4 \over 5} \cr} \)

Vậy  \(S = ( - \infty ; - {4 \over 5})\)  

LG b

\({{3x + 5} \over 2} - 1 \le {{x + 2} \over 3} + x\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& {{3x + 5} \over 2} - 1 \le {{x + 2} \over 3} + x \cr& \Leftrightarrow \frac{{3\left( {3x + 5} \right)}}{6} - \frac{6}{6} \le \frac{{2\left( {x + 2} \right)}}{6} + \frac{{6x}}{6}\cr&   \Leftrightarrow 3\left( {3x + 5} \right) - 6 \le 2\left( {x + 2} \right) + 6x\cr &\Leftrightarrow 9x + 15 - 6 \le 2x + 4 + 6x \cr 
& \Leftrightarrow x \le -5 \cr} \)

Vậy \(S = (-∞; -5]\)

LG c

\((1 - \sqrt 2 )x < 3 - 2\sqrt 2 \)

Lời giải chi tiết:

\(\eqalign{
& (1 - \sqrt 2 )x < 3 - 2\sqrt 2 \cr &\Leftrightarrow (1 - \sqrt 2 )x < {(1 - \sqrt 2 )^2} \cr 
& \Leftrightarrow x > {{{{(1 - \sqrt 2 )}^2}} \over {1 - \sqrt 2 }} = 1 - \sqrt 2 \cr &(do\;1 - \sqrt 2 < 0) \cr} \) 

Vậy \(S = (1 - \sqrt 2 ; + \infty )\)

LG d

\({(x + \sqrt 3 )^2} \ge {(x - \sqrt 3 )^2} + 2\)

Phương pháp giải:

Chuyển vế, thu gọn bpt sử dụng hằng đẳng thức.

Lời giải chi tiết:

\(\eqalign{
& {(x + \sqrt 3 )^2} \ge {(x - \sqrt 3 )^2} + 2 \cr 
& \Leftrightarrow {(x + \sqrt 3 )^2} - {(x - \sqrt 3 )^2} \ge 2 \cr 
&  \Leftrightarrow \left( {x + \sqrt 3  - x + \sqrt 3 } \right)\left( {x + \sqrt 3  + x - \sqrt 3 } \right) \ge 2 \cr & \Leftrightarrow 2\sqrt 3 .2x \ge 2\cr &\Leftrightarrow 4\sqrt 3 x \ge 2 \Leftrightarrow x \ge {1 \over {2\sqrt 3 }} \cr} \)

Vậy \(S = {\rm{[}}{1 \over {2\sqrt 3 }};\, + \infty )\)

Loigiaihay.com

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!

close