Câu 14 trang 195 SGK Đại số và Giải tích 11 Nâng cao

a. Chứng minh rằng hàm số đã cho liên tục tại điểm x = 0

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Cho hàm số \(y = \left| x \right|\)

LG a

Chứng minh rằng hàm số đã cho liên tục tại điểm x = 0

Giải chi tiết:

 Ta có: \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \left| x \right| = 0 = f\left( 0 \right)\)

Vậy f liên tục tại x = 0

LG b

Tính đạo hàm của hàm số tại x = 0, nếu có.

Giải chi tiết:

Ta có:

\(\eqalign{  & \mathop {\lim }\limits_{x \to {0^ + }} {{f\left( x \right) - f\left( 0 \right)} \over x} = \mathop {\lim }\limits_{x \to {0^ + }} {{\left| x \right|} \over x} = \mathop {\lim }\limits_{x \to 0} {x \over x} = 1  \cr  & \mathop {\lim }\limits_{x \to {0^ - }} {{f\left( x \right) - f\left( 0 \right)} \over x} = \mathop {\lim }\limits_{x \to {0^ - }} {{\left| x \right|} \over x} = \mathop {\lim }\limits_{x \to 0} {{ - x} \over x} =  - 1 \cr} \)

Do đó không tồn tại \(\mathop {\lim }\limits_{x \to 0} {{f\left( x \right) - f\left( 0 \right)} \over x}\) nên hàm số f không có đạo hàm tại x = 0

LG c

 Mệnh đề “Hàm số liên tục tại điểm xthì có đạo hàm tại x” đúng hay sai ?

Giải chi tiết:

Mệnh đề sai. Thật vậy, hàm số \(f\left( x \right) = \left| x \right|\) liên tục tại điểm 0 (theo câu a) nhưng không có đạo hàm tại điểm đó (theo câu b).

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close