Bài 1.21 trang 10 SBT Đại số và Giải tích 11 Nâng cao

Giải bài 1.21 trang 10 sách bài tập Đại số và Giải tích 11 Nâng cao. Giải các phương trình sau bằng cách dùng công thức biến đổi tổng thành tích:...

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau bằng cách dùng công thức biến đổi tổng thành tích:

LG a

 \(\sin 3x - \cos 2x = 0\) 

Phương pháp giải:

Hướng dẫn: Biến đổi phương trình đã cho như sau:

\(\sin 3x - \cos 2x = 0\)

\( \Leftrightarrow \sin 3x - \sin \left( {{\pi  \over 2} - 2x} \right) = 0\)

\(\Leftrightarrow 2\cos \left( {{x \over 2} + {\pi  \over 4}} \right)\sin \left( {{{5x} \over 2} - {\pi  \over 4}} \right) = 0\)

Lời giải chi tiết:

\(\sin 3x - \cos 2x = 0\)

\( \Leftrightarrow \sin 3x - \sin \left( {{\pi  \over 2} - 2x} \right) = 0\)

\(\Leftrightarrow 2\cos \left( {{x \over 2} + {\pi  \over 4}} \right)\sin \left( {{{5x} \over 2} - {\pi  \over 4}} \right) = 0\)

\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
\cos \left( {\frac{x}{2} + \frac{\pi }{4}} \right) = 0\\
\sin \left( {\frac{{5x}}{2} - \frac{\pi }{4}} \right) = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\frac{x}{2} + \frac{\pi }{4} = \frac{\pi }{2} + k\pi \\
\frac{{5x}}{2} - \frac{\pi }{4} = k\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\frac{x}{2} = \frac{\pi }{4} + k\pi \\
\frac{{5x}}{2} = \frac{\pi }{4} + k\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{2} + k2\pi \\
x = \frac{\pi }{{10}} + \frac{{k2\pi }}{5}
\end{array} \right.
\end{array}\)

LG b

\(\sin \left( {x + {{2\pi } \over 3}} \right) = \cos 3x\)

Phương pháp giải:

Hướng dẫn: Biến đổi phương trình đã cho như sau:

\(\eqalign{
& \sin \left( {x + {{2\pi } \over 3}} \right) = \cos 3x \cr&\Leftrightarrow \cos 3x - \cos \left( {x + {\pi \over 6}} \right) = 0 \cr 
& \Leftrightarrow - 2\sin \left( {2x + {\pi \over {12}}} \right)\sin \left( {x - {\pi \over {12}}} \right) = 0 \cr} \)

Lời giải chi tiết:

\(\begin{array}{l}
\sin \left( {x + \frac{{2\pi }}{3}} \right) = \cos 3x\\
\Leftrightarrow \cos 3x = \sin \left( {x + \frac{{2\pi }}{3}} \right)\\
\Leftrightarrow \cos 3x = \cos \left( {\frac{\pi }{2} - x - \frac{{2\pi }}{3}} \right)\\
\Leftrightarrow \cos 3x = \cos \left( { - \frac{\pi }{6} - x} \right)\\
\Leftrightarrow \cos 3x = \cos \left( {\frac{\pi }{6} + x} \right)\\
\Leftrightarrow \cos 3x - \cos \left( {\frac{\pi }{6} + x} \right) = 0\\
\Leftrightarrow - 2\sin \left( {2x + \frac{\pi }{{12}}} \right)\sin \left( {x - \frac{\pi }{{12}}} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sin \left( {2x + \frac{\pi }{{12}}} \right) = 0\\
\sin \left( {x - \frac{\pi }{{12}}} \right) = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x + \frac{\pi }{{12}} = k\pi \\
x - \frac{\pi }{{12}} = k\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = - \frac{\pi }{{12}} + k\pi \\
x = \frac{\pi }{{12}} + k\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = - \frac{\pi }{{24}} + \frac{{k\pi }}{2}\\
x = \frac{\pi }{{12}} + k\pi
\end{array} \right.
\end{array}\)

LG c

\(\sin \left( {3x - {{5\pi } \over 6}} \right) + \cos \left( {3x + {\pi  \over 4}} \right)=0\)

Phương pháp giải:

Hướng dẫn: Biến đổi phương trình đã cho như sau:

\(\eqalign{
& \sin \left( {3x - {{5\pi } \over 6}} \right) + \cos \left( {3x + {\pi \over 4}} \right) =0\cr&\Leftrightarrow \sin \left( {3x - {{5\pi } \over 6}} \right) + \sin \left( {{\pi \over 4} - 3x} \right) = 0 \cr 
& \Leftrightarrow 2\sin \left( {{{ - 7\pi } \over {12}}} \right)\cos \left( {3x - {{13\pi } \over {24}}} \right) = 0\cr& \Leftrightarrow \cos \left( {3x - {{13\pi } \over {24}}} \right) = 0 \cr} \)

Lời giải chi tiết:

\(\begin{array}{l}
\sin \left( {3x - \frac{{5\pi }}{6}} \right) + \cos \left( {3x + \frac{\pi }{4}} \right) = 0\\
\Leftrightarrow \sin \left( {3x - \frac{{5\pi }}{6}} \right) + \sin \left( {\frac{\pi }{2} - 3x - \frac{\pi }{4}} \right) = 0\\
\Leftrightarrow \sin \left( {3x - \frac{{5\pi }}{6}} \right) + \sin \left( {\frac{\pi }{4} - 3x} \right) = 0\\
\Leftrightarrow 2\sin \left( { - \frac{{7\pi }}{{12}}} \right)\cos \left( {3x - \frac{{13\pi }}{{24}}} \right) = 0\\
\Leftrightarrow \cos \left( {3x - \frac{{13\pi }}{{24}}} \right) = 0\\
\Leftrightarrow 3x - \frac{{13\pi }}{{24}} = \frac{\pi }{2} + k\pi \\
\Leftrightarrow 3x = \frac{{25\pi }}{{24}} + k\pi \\
\Leftrightarrow x = \frac{{25\pi }}{{72}} + \frac{{k\pi }}{3}
\end{array}\)

LG d

\(\cos {x \over 2} =  - \cos \left( {2x - {{30}^o}} \right)\)

Phương pháp giải:

Hướng dẫn: Biến đổi phương trình đã cho như sau:

\(\eqalign{
& \cos {x \over 2} = - \cos \left( {2x - {{30}^o}} \right)\cr &\Leftrightarrow \cos {x \over 2} + \cos \left( {x - {{30}^o}} \right) = 0 \cr 
& \Leftrightarrow 2\cos \left( {{{5x} \over 4} - {{15}^o}} \right)\cos \left( {{{15}^o} - {{3x} \over 4}} \right) = 0 \cr} \)

Lời giải chi tiết:

\(\eqalign{
& \cos {x \over 2} = - \cos \left( {2x - {{30}^o}} \right)\cr &\Leftrightarrow \cos {x \over 2} + \cos \left( {x - {{30}^o}} \right) = 0 \cr 
& \Leftrightarrow 2\cos \left( {{{5x} \over 4} - {{15}^o}} \right)\cos \left( {{{15}^o} - {{3x} \over 4}} \right) = 0 \cr} \)

\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
\cos \left( {\frac{{5x}}{4} - {{15}^0}} \right) = 0\\
\cos \left( {{{15}^0} - \frac{{3x}}{4}} \right) = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\frac{{5x}}{4} - {15^0} = {90^0} + k{180^0}\\
{15^0} - \frac{{3x}}{4} = {90^0} + k{180^0}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\frac{{5x}}{4} = {105^0} + k{180^0}\\
\frac{{3x}}{4} = - {75^0} - k{180^0}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = {84^0} + k{144^0}\\
x = - {100^0} - k{240^0}
\end{array} \right.
\end{array}\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close