tuyensinh247

Bài tập 15 trang 80 Tài liệu dạy – học Toán 8 tập 1

Giải bài tập Chứng minh các đẳng thức sau:

Quảng cáo

Đề bài

Chứng minh các đẳng thức sau:

a) \(\left( {{a^2} - {1 \over a}} \right).\left( {{{a + 1} \over {{a^2} + 1 + a}} - {1 \over {1 - a}}} \right) = 2a + 1\) ;

b) \({3 \over {{x^2} - 3x}} - {{{x^2}} \over {3 - x}} = x + 3 + {{9x + 3} \over {{x^2} - 3x}}\) ;

Lời giải chi tiết

\(\eqalign{  & a)\,\,\left( {{a^2} - {1 \over a}} \right)\left( {{{a + 1} \over {{a^2} + 1 + a}} - {1 \over {1 - a}}} \right) = 2a + 1  \cr  & VT = {{{a^3} - 1} \over a}.{{\left( {a + 1} \right)\left( {1 - a} \right) - \left( {{a^2} + 1 + a} \right)} \over {\left( {{a^2} + 1 + a} \right)\left( {1 - a} \right)}}  \cr  & \,\,\,\,\,\,\, = {{ - \left( {1 - {a^3}} \right)} \over a}.{{1 - {a^2} - {a^2} - 1 - a} \over {\left( {{a^2} + 1 + a} \right)\left( {1 - a} \right)}}  \cr  & \,\,\,\,\,\,\, = {{ - \left( { - 2{a^2} - a} \right)} \over a} = {{a\left( {2a + 1} \right)} \over a} = 2a + 1 = VP  \cr  & b)\,\,{3 \over {{x^2} - 3x}} - {{{x^2}} \over {3 - x}} = x + 3 + {{9x + 3} \over {{x^2} - 3x}}  \cr  & VT = {3 \over {x\left( {x - 3} \right)}} + {{{x^2}} \over {x - 3}} = {{3 + {x^3}} \over {x\left( {x + 3} \right)}}  \cr  & VP = {{\left( {x + 3} \right)\left( {{x^2} - 3x} \right) + 9x + 3} \over {{x^2} - 3x}}  \cr  & \,\,\,\,\,\,\, = {{{x^3} - 3{x^2} + 3{x^2} - 9x + 9x + 3} \over {{x^2} - 3x}} = {{{x^3} + 3} \over {x\left( {x - 3} \right)}} = VT \cr} \)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close