Bài 9.8 trang 94 SGK Toán 11 tập 2 - Kết nối tri thứcTính đạo hàm của các hàm số sau: Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Tính đạo hàm của các hàm số sau: a) \(y = x{\sin ^2}x;\) b) \(y = {\cos ^2}x + \sin 2x;\) c) \(y = \sin 3x - 3\sin x;\) d) \(y = \tan x + \cot x.\) Video hướng dẫn giải Phương pháp giải - Xem chi tiết - Sử dụng quy tắc \(\left( {u \pm v} \right)' = u' \pm v';\left( {uv} \right)' = u'v + uv'\) - Sử dụng công thức \(\begin{array}{l}\left( {{x^n}} \right)' = n{x^{n - 1}};\\\left( {\sin u} \right)' = u'.\cos u;\,\\\left( {\cos x} \right)' = - \sin x\\\left( {\tan x} \right)' = \frac{1}{{{{\cos }^2}x}};\\\left( {\cot x} \right)' = \frac{{ - 1}}{{{{\sin }^2}x}}\end{array}\) Lời giải chi tiết a) \(y' = x'{\sin ^2}x + x\left( {{{\sin }^2}x} \right)' = {\sin ^2}x + x.2\sin x.\left( {\sin x} \right)'\\ = {\sin ^2}x + x.2\sin x.\cos x = {\sin ^2}x + x\sin 2x\) b) \(y' = \left( {{{\cos }^2}x} \right)' + \left( {\sin 2x} \right)' = 2\cos x.\left( {\cos x} \right)' + \left( {2x} \right)'\cos 2x\\ = - 2\cos x.\sin x + 2\cos 2x = - \sin 2x + 2\cos 2x\) c) \(y' = \left( {\sin 3x} \right)' - \left( {3\sin x} \right)' = 3.\cos 3x - 3\cos x\) d) \(y' = \left( {\tan x} \right)' + \left( {\cot x} \right)' = \frac{1}{{{{\cos }^2}x}} - \frac{1}{{{{\sin }^2}x}}\)
Quảng cáo
|