Bài 9 trang 222 SGK Đại số 10 Nâng cao

Giải và biện luận các phương trình

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giải và biện luận các phương trình

LG a

\({{mx - m - 3} \over {x + 1}} = 1\)

Lời giải chi tiết:

Điều kiện: \(x ≠ 1\)

Ta có:

\({{mx - m - 3} \over {x + 1}} = 1 \Leftrightarrow mx - m - 3 = x + 1\)

\(\Leftrightarrow (m - 1)x = m + 4\)

+ Nếu m ≠ 1 thì \(x = {{m + 4} \over {m - 1}}\).

\(x\ne -1 \Leftrightarrow {{m + 4} \over {m - 1}} \ne  - 1 \) \(\Leftrightarrow m + 4 \ne  1-m \) \(\Leftrightarrow m \ne  - {3 \over 2}\)

+ Nếu m = 1: phương trình vô nghiệm

Vậy:

Với m ≠ 1  và \(m \ne  - {3 \over 2}:\,\,\,S = {\rm{\{ }}{{m + 4} \over {m - 1}}{\rm{\} }}\)

Với m = 1 hoặc \(m =  - {3 \over 2}:\,\,\,\,S = \emptyset \)

LG b

\(|(m + 1)x – 3 | = |x + 2|\)

Lời giải chi tiết:

Ta có:

\(|(m + 1)x – 3 | = |x + 2| \)

\( \Leftrightarrow \left[ \matrix{
(m + 1)x - 3 = x + 2 \hfill \cr 
(m + 1)x - 3 = - x - 2 \hfill \cr} \right. \) \(\Leftrightarrow \left[ \matrix{
mx = 5 \,\,(1)\hfill \cr 
(m + 2)x = 1 \,\,(2)\hfill \cr} \right.\)

+) Nếu \(m = 0\) thì (1) là 0x=5(vô nghiệm)

(2) là 2x=1\( \Leftrightarrow x = \dfrac{1}{2}\) nên phương trình có nghiệm \(x = \dfrac{1}{2}\).

+) Nếu \(m =  - 2\) thì (2) là 0x=1 (vô nghiệm)

(1) là \( - 2x = 5 \Leftrightarrow x =  - \dfrac{5}{2}\)

Nên phương trình có nghiệm \(x =  - \dfrac{5}{2}\)

+) Nếu \(m \ne 0,m \ne  - 2\) thì \(\left[ \begin{array}{l}x = \dfrac{5}{m}\\x = \dfrac{1}{{m + 2}}\end{array} \right.\)

Vậy \(m = 0;\,\,S = {\rm{\{ }}{1 \over 2}{\rm{\} }}\)

+ Với m = -2; \(S = {\rm{\{  - }}{5 \over 2}{\rm{\} }}\)

+ Với m ≠ 0 và m ≠ -2 thì \(S = {\rm{\{ }}{5 \over m};\,\,{1 \over {m + 2}}{\rm{\} }}\)

LG c

\((mx + 1)\sqrt {x - 1}  = 0\)

Lời giải chi tiết:

Điều kiện: x ≥ 1

\((mx + 1)\sqrt {x - 1} = 0 \) \(\Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr 
mx + 1 = 0\,\,\,\,\,\,\,\,\,\,\,\,(1) \hfill \cr} \right.\,\,\,\,\)

+ Với m = 0 thì phương trình (1) vô nghiệm. Do đó: S = {1}

+ Với m ≠ 0 thì (1) có nghiệm là \(x =  - {1 \over m}\)

\( x\ge 1 \Leftrightarrow  - {1 \over m} \ge 1 \Leftrightarrow {{m + 1} \over m} \le 0\) \( \Leftrightarrow  - 1 \le m < 0\) 

Vậy:  với m < -1 hoặc m ≥ 0 thì S = {1}

-1 ≤ m < 0 thì \(S = {\rm{\{ }}1, - {1 \over m}{\rm{\} }}\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close