Bài 8 trang 52 SGK Hình học 10 nâng cao

Chứng minh rằng điều kiện cần và đủ để tam giác ABC vuông tại A

Quảng cáo

Đề bài

Chứng minh rằng điều kiện cần và đủ để tam giác \(ABC\) vuông tại \(A\) là \(\overrightarrow {BA} .\,\overrightarrow {BC}  = A{B^2}\).

Lời giải chi tiết

Ta có \(\overrightarrow {BA} .\,\overrightarrow {BC}  = {\overrightarrow {BA} ^2}\,\)\( \Leftrightarrow \,\,\overrightarrow {BA} (\overrightarrow {BC}  - \overrightarrow {BA} ) = 0\)

\( \Leftrightarrow \overrightarrow {BA} .\,\overrightarrow {AC}  = 0\,\, \Leftrightarrow \,\,BA \bot AC\)      

\( \Leftrightarrow \)  Tam giác \(ABC\) vuông tại \(A\).

Cách khác:

Trong tam giác ABC ta có:

\(\begin{array}{l}\overrightarrow {BA} .\overrightarrow {BC}  = \overrightarrow {BA} .\left( {\overrightarrow {BA}  + \overrightarrow {AC} } \right)\\ = {\overrightarrow {BA} ^2} + \overrightarrow {BA} .\overrightarrow {AC} \end{array}\)

Do đó, tam giác ABC vuông tại A\( \Leftrightarrow \overrightarrow {BA} .\overrightarrow {AC}  = 0\)

\( \Rightarrow \overrightarrow {BA} .\overrightarrow {BC}  = {\overrightarrow {BA} ^2} + 0 = {\overrightarrow {BA} ^2}\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close