Bài 7.45 trang 65 SGK Toán 11 tập 2 - Kết nối tri thức

Trên mặt đất phẳng, người ta dựng một cây cột AB có chiều dài bằng (10;{rm{m}})

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Trên mặt đất phẳng, người ta dựng một cây cột AB có chiều dài bằng \(10\;{\rm{m}}\) và tạo với mặt đất góc \({80^0}\). Tại một thời điểm dưới ánh sáng mặt trời, bóng BC của cây cột trên mặt đất dài \(12\;{\rm{m}}\) vào tạo với cây cột một góc bằng \({120^0}\) (tức là \(\widehat {ABC} = {120^0}\)). Tính góc giữa mặt đất và đường thẳng chứa tia sáng mặt trời tại thời điểm nói trên.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Định lý cosin: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)

Lời giải chi tiết

 

Góc giữa mặt đất và đường thẳng chứa tia sáng mặt trời tại thời điểm nói trên là \(\widehat {ACH}\)

Xét tam giác ABC có

\(\begin{array}{l}A{C^2} = A{B^2} + B{C^2} - 2AB.BC.\cos \widehat {ABC} = {10^2} + {12^2} - 2.10.12.\cos {120^0} = 364\\ \Rightarrow AC = 2\sqrt {91} \left( m \right)\end{array}\)

Gọi H là hình chiếu của A trên mặt đất

Xét tam giác ABH vuông tại H có

\(AH = 10.\sin {80^0}\)

Xét tam giác ACH vuông tại H có

\(\sin \widehat {ACH} = \frac{{AH}}{{AC}} = \frac{{10\sin {{80}^0}}}{{2\sqrt {91} }} \Rightarrow \widehat {ACH} \approx {31^0}\)

Vậy góc giữa mặt đất và đường thẳng chứa tia sáng mặt trời tại thời điểm nói trên khoảng 310.

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close