Bài 7.44 trang 65 SGK Toán 11 tập 2 - Kết nối tri thức

Cho hình chóp S.ABCD có đáy ABCD là hình thang cân

Quảng cáo

Đề bài

Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, \(AB//CD\) và \(AB = BC = DA = a\), \(CD = 2a\). Biết hai mặt phẳng \((SAC)\) và \((SBD)\) cùng vuông góc với mặt phẳng đáy \((ABCD)\) và \(SA = a\sqrt 2 \). Tính theo \(a\) khoảng cách từ \(S\) đến mặt phẳng \((ABCD)\) và thể tích của khối chóp S.ABCD.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Thể tích khối chóp \(V = \frac{1}{3}h.S\)

Lời giải chi tiết

 

Gọi O là giao điểm của AC và BD

Mà \((SAC)\) và \((SBD)\) cùng vuông góc với mặt phẳng đáy \((ABCD)\) nên \(SO \bot \left( {ABCD} \right)\)

Kẻ \(AK \bot DC\) tại K \( \Rightarrow DK = \frac{{DC - AB}}{2} = \frac{a}{2}\)

Xét tam giác ADK vuông tại K có

\(AK = \sqrt {A{D^2} - D{K^2}}  = \frac{{a\sqrt 3 }}{2}\)

Xét tam giác AKC vuông tại K có

\(AC = \sqrt {A{K^2} + K{C^2}}  = \sqrt {{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2} + {{\left( {\frac{{3a}}{2}} \right)}^2}}  = a\sqrt 3 \)

Ta có AB // CD nên \(\frac{{OA}}{{OC}} = \frac{{AB}}{{DC}} = \frac{1}{2} \Rightarrow OA = \frac{1}{3}AC = \frac{{a\sqrt 3 }}{3}\)

Xét tam giác SAO vuông tại O có

\(SO = \sqrt {SA{^2} - A{O^2}}  = \sqrt {{({a \sqrt 2})^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}}  = \frac{{a\sqrt {15} }}{3}\)

Diện tích đáy ABCD là:

\(S_{ABCD} = \frac{1}{2} (AB+CD).AK = \frac{1}{2} (a+2a).\frac{{a\sqrt {3} }}{2} =  \frac {3a^2\sqrt{3}}{4}\)

Thể tích của khối chóp S.ABCD là:

\(V_{S.ABCD} = \frac {1}{3} .SO.S_{ABCD} = \frac {1}{3}.\frac{{a\sqrt {15} }}{3}.\frac {3a^2\sqrt{3}}{4} = \frac {a^3\sqrt5}{4}\)

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close