Bài 7.23 trang 59 SGK Toán 11 tập 2 - Kết nối tri thứcCho hình hộp chữ nhật ABCD.A'B'C'D' có AA' = a, AB = b, BC = c. Quảng cáo
Đề bài Cho hình hộp chữ nhật ABCD.A'B'C'D' có AA' = a, AB = b, BC = c. a) Tính khoảng cách giữa CC' và (BB'D'D). b) Xác định đường vuông góc chung và tính khoảng cách giữa AC và B'D'. Video hướng dẫn giải Phương pháp giải - Xem chi tiết - Khoảng cách giữa đường thẳng a và mặt phẳng (P) song song với a là khoảng cách từ một điểm bất kì trên a đến (P). - Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song, tương ứng chứa hai đường thẳng đó. Lời giải chi tiết a) Trong (ABCD) kẻ \(CE \bot BD\) Mà \(CE \bot BB'\left( {BB' \bot \left( {ABCD} \right)} \right) \Rightarrow CE \bot \left( {BB'D'D} \right)\) Ta có CC’ // BB’ \( \Rightarrow \) CC’ // (BB’D’D) \( \Rightarrow \) d(CC’, (BB’D’D)) = d(C, (BB’D’D)) = CE Xét tam giác BCD vuông tại C có \(\frac{1}{{C{E^2}}} = \frac{1}{{B{C^2}}} + \frac{1}{{C{D^2}}} = \frac{1}{{{c^2}}} + \frac{1}{{{b^2}}} = \frac{{{b^2} + {c^2}}}{{{c^2}{b^2}}} \Rightarrow CE = \frac{{bc}}{{\sqrt {{b^2} + {c^2}} }}\) b) \(AC \subset \left( {ABCD} \right),B'D' \subset \left( {A'B'C'D'} \right),\left( {ABCD} \right)//\left( {A'B'C'D'} \right)\) \( \Rightarrow d\left( {AC,B'D'} \right) = d\left( {\left( {ABCD} \right),\left( {A'B'C'D'} \right)} \right) = BB' = a\)
Quảng cáo
|