tuyensinh247

Bài 69 trang 113 SBT Hình học 10 Nâng cao

Giải bài tập Bài 69 trang 113 SBT Hình học 10 Nâng cao

Quảng cáo

Đề bài

Chứng minh rằng phép co về trục \(Ox\) theo hệ số \( \dfrac{b}{a} < 1\), biến đường tròn \((C): {x^2} + {y^2} = {a^2}\) thành elip \((E):  \dfrac{{{x^2}}}{{{a^2}}} +  \dfrac{{{y^2}}}{{{b^2}}} = 1\) và ngược lại, phép co về trục \(Oy\) theo hệ số \( \dfrac{a}{b} > 1\) biến elip \((E):  \dfrac{{{x^2}}}{{{a^2}}} +  \dfrac{{{y^2}}}{{{b^2}}} = 1\) thành đường tròn \((C): {x^2} + {y^2} = {a^2}\).

Lời giải chi tiết

\(M(x ; y) \in (C)    \Rightarrow {x^2} + {y^2} = {a^2}\). Ảnh \(M’\) của \(M\) qua phép co về trục \(Ox\) theo hệ số \( \dfrac{b}{a} < 1\) là \(\left\{ \begin{array}{l}{x_{M'}} = x\\{y_{M'}} =  \dfrac{b}{a}y\end{array} \right.  \\  \Rightarrow {a^2} = {x^2} + {y^2}\\ = x_{M'}^2 +  \dfrac{{{a^2}}}{{{b^2}}}y_{M'}^2  \\  \Leftrightarrow     \dfrac{{x_{M'}^2}}{{{a^2}}} +  \dfrac{{y_{M'}^2}}{{{b^2}}} = 1.\)

Vậy ảnh của đường tròn \((C)\) qua phép co về trục \(Ox\) theo hệ số \( \dfrac{b}{a} < 1\) là elip \((E):  \dfrac{{{x^2}}}{{{a^2}}} +  \dfrac{{{y^2}}}{{{b^2}}} = 1\).

Phần ngược lại chứng minh tương tự.

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close