Bài 61 trang 102 SGK Đại số 10 nâng cao

Giải và biện luận các hệ phương trình

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giải và biện luận các hệ phương trình

LG a

\(\left\{ \matrix{
mx + 3y = m - 1 \hfill \cr 
2x + (m - 1)y = 3 \hfill \cr} \right.\)

Lời giải chi tiết:

Ta có:

+) Nếu \(D \ne 0 \Leftrightarrow \left\{ \begin{array}{l}m \ne 3\\m \ne  - 2\end{array} \right.\) thì hệ có nghiệm \(\left\{ \begin{array}{l}x = \frac{{{D_x}}}{D} = \frac{{\left( {m - 4} \right)\left( {m + 2} \right)}}{{\left( {m - 3} \right)\left( {m + 2} \right)}} = \frac{{m - 4}}{{m - 3}}\\y = \frac{{{D_y}}}{D} = \frac{{m + 2}}{{\left( {m - 3} \right)\left( {m + 2} \right)}} = \frac{1}{{m - 3}}\end{array} \right.\)

+) Nếu \(D = 0 \Leftrightarrow \left[ \begin{array}{l}m = 3\\m =  - 2\end{array} \right.\)

- Với \(m = 3\): hệ vô nghiệm (do Dy = 5 ≠ 0)

- Với \(m = -2\) hệ thành 

\(\left\{ \matrix{
- 2x + 3y = - 3 \hfill \cr 
2x - 3y = 3 \hfill \cr} \right. \Leftrightarrow y = {1 \over 3}(2x - 3)\)

Hệ có vô số nghiệm.

LG b

\(\left\{ \matrix{
5x + (a - 2)y = a \hfill \cr 
(a + 3)x + (a + 3)y = 2a \hfill \cr} \right.\)

Lời giải chi tiết:

Ta có:

Nếu \(D \ne 0 \Leftrightarrow \left\{ \begin{array}{l}a \ne  - 3\\a \ne 7\end{array} \right.\) thì hệ có nghiệm \(\left\{ \begin{array}{l}x = \frac{{a\left( {7 - a} \right)}}{{\left( {a + 3} \right)\left( {7 - a} \right)}} = \frac{a}{{a + 3}}\\y = \frac{{a\left( {7 - a} \right)}}{{\left( {a + 3} \right)\left( {7 - a} \right)}} = \frac{a}{{a + 3}}\end{array} \right.\)

Nếu \(D = 0\) \( \Leftrightarrow \left[ \begin{array}{l}a =  - 3\\a = 7\end{array} \right.\)

+ Với \(a=-3\) thì hệ vô nghiệm vì \({D_x} =  - 30 \ne 0\)

+ Với \(a = 7\), hệ thành 

\(\left\{ \matrix{
5x + 5y = 7 \hfill \cr 
10x + 10y = 14 \hfill \cr} \right. \Leftrightarrow y = - x + {7 \over 5}\)

Hệ có vô số nghiệm \(\left( {x;{7 \over 5} - x} \right),\,x \in\mathbb R\)

Loigiaihay.com

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!

close