Bài 6 trang 111 SGK Toán 9 tập 2

Giải bài 6 trang 111 SGK Toán 9 tập 2. Chiều cao của một hình trụ bằng bán kính đường tròn đáy. Diện tích xung quanh của hình trụ là 314

Quảng cáo

Đề bài

Chiều cao của một hình trụ bằng bán kính đường tròn đáy. Diện tích xung quanh của hình trụ là \(314\) \(c{m^2}.\)

Hãy tính bán kính đường tròn đáy và thể tích hình trụ (làm tròn kết quả đến số thập phân thứ hai).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Cho hình trụ có các kích thước: chiều cao là \(h,\) bán kính đáy là \(r.\) Khi đó ta có:

+) Chu vi một đáy của hình trụ: \(C=2\pi r.\)

+) Diện tích một mặt đáy: \(S=\pi r^2.\)

+) Diện tích xung quanh của hình trụ: \(S_{xq}=2\pi rh.\)

+) Diện tích toàn phần của hình trụ: \(S_{tp}=2 \pi rh+ 2\pi r^2.\)

+) Thể tích của hình trụ: \(V=Sh=\pi r^2 h.\)

Lời giải chi tiết

Gọi hình trụ có chiều cao là \(h,\) bán kính đáy là \(r.\)

Ta có \({S_{xq}}= 2πrh = 314 \, cm^2.\)  

Vì \(h=r\) nên ta có: \(2 \pi r^2=324\) \(\Rightarrow r^2=\dfrac{S_{xq}}{2\pi }.\)

\(\Rightarrow r^2=\dfrac{314}{2\pi } \Rightarrow  r ≈ 7,07\) 

Thể tích của hình trụ: \( V = πr^2h = 3,14. 7,07^3≈ 1109,65 \, (cm^3).\)

Loigiaihay.com

Quảng cáo

Gửi bài