Bài 58 trang 56 SGK giải tích 12 nâng cao

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số: b) Với các giá nào của m, đường thẳng đi qua điểm A(-2;2) và có hệ số góc m cắt đồ thị của hàm số đã cho: •Tại hai điểm phân biệt? •Tại hai điểm thuộc hai nhánh của đồ thị?

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

LG a

Khảo sát sự biến thiên và vẽ đồ thị của hàm số: \(y = {{2x - 1} \over {x + 1}}\)

Lời giải chi tiết:

Tập xác định: \(D = R\backslash \left\{ { - 1} \right\}\)

\(y' = {3 \over {{{(x + 1)}^2}}}>0\,\,\forall x\in D\)

Hàm số đồng biến trên khoảng \(( - \infty ; - 1)\) và \(( - 1; + \infty )\)

Hàm số không có cực trị

Giới hạn

\(\mathop {\lim }\limits_{x \to  \pm \infty } y = 2\) 

Tiệm cận đứng \(y=2\)

\(\eqalign{
& \mathop {\lim }\limits_{x \to {1^ - }} y = + \infty \cr 
& \mathop {\lim }\limits_{x \to {1^ + }} y = - \infty \cr} \)

Tiệm cận đứng: \(x=-1\)

Bảng biến thiên:

Đồ thị giao \(Ox\) tại điểm \(\left( {{1 \over 2};0} \right)\)

Đồ thị giao \(Oy\) tại điểm \((0;-1)\)

Đồ thị hàm số nhận điểm I(-1;2) làm tâm đối xứng. 

LG b

Với các giá trị nào của \(m\), đường thẳng \(\left( {{d_m}} \right)\) đi qua điểm \(A(-2;2)\) và có hệ số góc \(m\) cắt đồ thị của hàm số đã cho:
• Tại hai điểm phân biệt?
• Tại hai điểm thuộc hai nhánh của đồ thị?

Lời giải chi tiết:

Phương trình đường thẳng \(\left( {{d_m}} \right)\) qua điểm \(A(-2;2)\) có hệ số góc \(m\) là:

\(y - 2 = m\left( {x + 2} \right)\) hay \(y = mx + 2m + 2\)

Hoành độ giao điểm của đường thẳng \(\left( {{d_m}} \right)\) và đường cong đã cho là nghiệm phương trình:

\(\eqalign{
& mx + 2m + 2 = {{2x - 1} \over {x + 1}} \cr 
& \Rightarrow \left( {mx + 2m + 2} \right)\left( {x + 1} \right) = 2x - 1\,\,\,\,\,\left( 1 \right) \cr 
& \Leftrightarrow  m{x^2} + 3mx + 2m + 3 = 0\,\,\,\left( 2 \right) \cr} \)

• Đường thẳng \(\left( {{d_m}} \right)\) cắt đường cong tại hai điểm phân biệt khi và chỉ khi phương trình \((2)\) có hai nghiệm phân biệt khác \(-1\), tức là

\(\begin{array}{l}
\left\{ \begin{array}{l}
a \ne 0\\
\Delta > 0\\
f\left( { - 1} \right) \ne 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m \ne 0\\
9{m^2} - 4m\left( {2m + 3} \right) > 0\\
m.{\left( { - 1} \right)^2} + 3m.\left( { - 1} \right) + 2m + 3 \ne 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m \ne 0\\
{m^2} - 12m > 0\\
3 \ne 0\left( {\text{đúng}} \right)
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m \ne 0\\
\left[ \begin{array}{l}
m > 12\\
m < 0
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
m > 12\\
m < 0
\end{array} \right.(*)
\end{array}\)

• Hai nhánh của đường cong nằm về hai phía của đường tiệm cận đứng \(x = -1\) của đồ thị.

\(\Leftrightarrow\) Đường thẳng \(\left( {{d_m}} \right)\) cắt đường cong tại hai điểm thuộc hai nhánh của nó

\(\Leftrightarrow\) (1) có hai nghiệm \({x_1},\,{x_2}\) thỏa mãn \({x_1} <  - 1 < {x_2}\)

\(\eqalign{
& \Leftrightarrow {x_1} + 1 < 0 < {x_2} + 1\cr&\Leftrightarrow \left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right) < 0 \cr 
& \Leftrightarrow {x_1}.{x_2} + {x_1} + {x_2} + 1 < 0 \cr&\Leftrightarrow {{2m + 3} \over m} - {{3m} \over m} + 1 < 0 (\text{  Vi-et   })\cr 
& \Leftrightarrow {3 \over m} < 0 \cr} \)

Kết hợp với (*) được \(m < 0\)

Vậy với \(m < 0\) thì \(\left( {{d_m}} \right)\) cắt (C) tại hai điểm phân biệt thuộc hai nhánh của đồ thị.

Cách khác:

\(\Leftrightarrow\) (1) có hai nghiệm \({x_1},\,{x_2}\) thỏa mãn \({x_1} <  - 1 < {x_2}\)

af(-1)<0

m(m(-1)2+3m(-1)+2m+3)<0

3m<0 m < 0

Vậy với m (-∞;0) thì đường thẳng (dm) sẽ cắt đồ thị (C) tại 2 điểm phân biệt 2 nhánh đồ thị.

Loigiaihay.com

  • Bài 59 trang 56 SGK giải tích 12 nâng cao

    Chứng minh rằng các đồ thị của ba hàm số: tiếp xúc với nhau tại điểm A(-1;2) (tức là chúng có cùng tiếp tuyến tại A).

  • Bài 60 trang 56 SGK giải tích 12 nâng cao

    Chứng minh rằng các đồ thị của hai hàm số: tiếp xúc với nhau. Xác định tiếp điểm của hai đường cong trên và viết phương trình tiếp tuyến chung tại điểm đó.

  • Bài 61 trang 56 SGK giải tích 12 nâng cao

    Một viên đạn được bắn ra với vận tốc ban đầu từ một nòng súng đặt ở gốc tọa độ O, nghiêng một góc với mặt đất (nòng súng nằm trong mặt phẳng thẳng đứng Oxy và tạo với trục hoành Ox góc ). Biết quỹ đạo chuyển động của viên đạn là parabol.

  • Bài 62 trang 57 SGK giải tích 12 nâng cao

    a) Khảo sát sự biến thiên và vẽ đồ thị hàm số: b) Chứng minh rằng giao điểm I của hai đường tiệm cận của đường cong đã cho là tâm đối xứng của nó.

  • Bài 63 trang 57 SGK giải tích 12 nâng cao

    a) Khảo sát sự biến thiên và vẽ đồ thị (H) của hàm số: b) Chứng minh rằng đường thẳng luôn đi qua một điểm cố định của đường cong (H) khi m biến thiên. c) Tìm các giá trị của m sao cho đường thẳng đã cho cắt đường cong (H) tại hai điểm thuộc cùng một nhánh của (H).

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close