Giải bài 5 trang 80 SGK Hình học 12

Viết phương trình mặt phẳng.

Quảng cáo

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho tứ diện có các đỉnh là \(A(5 ; 1 ; 3), B(1 ; 6 ; 2), C(5 ; 0 ; 4), D(4 ; 0 ; 6).\)

LG a

a) Hãy viết các phương trình mặt phẳng \((ACD)\) và \((BCD)\)

Phương pháp giải:

Mặt phẳng \((P)\) đi qua \(3\) điểm \(A, \, \, B\) và \(C\) có VTPT:  \(\overrightarrow {{n_P}}  = \left[ {\overrightarrow {AB} ,\;\overrightarrow {AC} } \right].\)

+) Phương trình mặt phẳng \((P)\) đi qua \(M(x_0;\, \, y_0;\,\, z_0)\) và có VTPT  \(\overrightarrow n  = \left( {a;\;b;\;c} \right)\) có dạng:  \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0.\)

Lời giải chi tiết:

Mặt phẳng \((ADC)\) đi qua \(A(5 ; 1 ; 3)\) và chứa giá của các vectơ \(\overrightarrow{AC}(0 ; -1 ; 1)\) và \(\overrightarrow{AD}(-1 ; -1 ; 3)\).

Ta có:: \(\left [\overrightarrow{AC},\overrightarrow{AD} \right ]\) \( = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&1\\{ - 1}&3\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}1&0\\3&{ - 1}\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}0&{ - 1}\\{ - 1}&{ - 1}\end{array}} \right|} \right)\) \(= (-2 ; -1 ; -1).\)

Chọn \(\overrightarrow {{n_{\left( {ACD} \right)}}} =(2;1;1)\).

Phương trình \((ACD)\) có dạng: \(2(x - 5) + (y - 1) + (z - 3) = 0\) hay \(2x + y + z - 14 = 0\).

Tương tự ta có :\(\overrightarrow{BC}(4 ; -6 ; 2)\), \(\overrightarrow{BD}(3 ; -6 ; 4)\) và

\(\left (\begin{vmatrix} -6 & 2\\ -6 & 4 \end{vmatrix}; \begin{vmatrix} 2 &4 \\ 4& 3 \end{vmatrix};\begin{vmatrix} 4 & -6\\ 3& -6 \end{vmatrix} \right )\)

\(= (-12 ; -10 ; -6)=-2(6; 5; 3).\)

Chọn \(\overrightarrow{n_{(BCD)}}=(6;5;3)\) là VTPT của mặt phẳng \((BCD)\).

Phương trình mặt phẳng \((BCD)\) có dạng: \(6(x - 1) + 5(y - 6) +3(z - 2) = 0\) hay \(6x + 5y + 3z - 42 = 0\).

LG b

b) Hãy viết phương trình mặt phẳng \((α)\) đi qua cạnh \(AB\) và song song với cạnh \(CD\).

Lời giải chi tiết:

Mặt phẳng \(( α )\) qua cạnh \(AB\) và song song với \(CD\) thì \(( α )\) qua \(A\) và nhận \(\overrightarrow{AB} (-4 ; 5 ; -1)\) , \(\overrightarrow{CD}(-1 ; 0 ; 2)\) làm vectơ chỉ phương.

VTPT của  mặt phẳng \((α): \overrightarrow{n}=\left [\overrightarrow{AB},\overrightarrow{CD} \right ] \) \(= \left( {\left| {\begin{array}{*{20}{c}}5&{ - 1}\\0&2\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}{ - 1}&{ - 4}\\2&{ - 1}\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}{ - 4}&5\\{ - 1}&0\end{array}} \right|} \right)\) \(= (10 ; 9 ; 5).\)

Phương trình mặt phẳng \(( α )\) có dạng : \(10\left( {x - 5} \right) + 9\left( {y - 1} \right) + 5\left( {z - 3} \right) = 0\) hay \(10x + 9y + 5z - 74 = 0\).

Loigiaihay.com

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close