Bài 41 trang 214 SGK Đại số 10 Nâng cao

Hãy tính giá trị lượng giác sau:

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

LG a

a) Biết \(\sin \alpha  = {1 \over 3};\,\,\alpha  \in ({\pi  \over 2};\,\pi )\) , hãy tính giá trị lượng giác của góc 2α  và góc \({\alpha  \over 2}\)

Lời giải chi tiết:

Ta có:

\(\left\{ \matrix{
\sin \alpha = {1 \over 3} \hfill \cr 
{\pi \over 2} < \alpha < \pi \hfill \cr} \right. \)

\(\Rightarrow \cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } \)\(= - \sqrt {1 - {1 \over 9}} = - {{2\sqrt 2 } \over 3}\)

Khi đó:

\(\eqalign{
& \sin 2\alpha = 2\sin \alpha \cos \alpha \cr&= 2.{1 \over 3}( - {{2\sqrt 2 } \over 3}) = - {{4\sqrt 2 } \over 9} \cr 
& \cos 2\alpha = 1 - 2{\sin ^2}\alpha = {7 \over 9} \cr 
& \tan 2\alpha = {{\sin 2\alpha } \over {\cos 2\alpha }} = - {{4\sqrt 2 } \over 7} \cr 
& \cot 2\alpha = - {{7\sqrt 2 } \over 8} \cr} \)

Ta có:

\({\pi \over 4} < {\alpha \over 2} < {\pi \over 2} \Rightarrow \left\{ \matrix{
\cos {\alpha \over 2} > 0 \hfill \cr 
\sin {\alpha \over 2} > 0 \hfill \cr} \right.\)

\(\eqalign{
& \cos \alpha = 2{\cos ^2}{\alpha \over 2} - 1 \cr&\Rightarrow \cos {\alpha \over 2} = \sqrt {{{1 + \cos \alpha } \over 2}} \cr&= \sqrt {{{3 - 2\sqrt 2 } \over 6}} \cr 
& \cos \alpha = 1 - {\sin ^2}{\alpha \over 2} \cr&\Rightarrow \sin {\alpha \over 2} = \sqrt {{{1 - \cos \alpha } \over 2}} \cr&= \sqrt {{{3 + 2\sqrt 2 } \over 6}} \cr 
& \tan {\alpha \over 2} = {{\sin {\alpha \over 2}} \over {\cos {\alpha \over 2}}} = 3 + 2\sqrt 2 \cr 
& \cot {\alpha \over 2} = 3 - 2\sqrt 2 \cr} \)

LG b

Sử dụng \({15^0} = {{{{30}^0}} \over 2}\) , hãy kiểm nghiệm lại kết quả của bài tập 39.

Lời giải chi tiết:

Ta có:

\(\eqalign{
& 2{\cos ^2}{15^0} = 1 + \cos {30^0} = 1 + {{\sqrt 3 } \over 2} \cr&\Rightarrow \cos {15^0} = \sqrt {{{2 + \sqrt 3 } \over 4}} \cr & = \sqrt {\frac{{4 + 2\sqrt 3 }}{8}}  = \frac{{1 + \sqrt 3 }}{2\sqrt 2}\cr 
& 2{\sin ^2}{15^0} = 1 - \cos {30^0} = 1 - {{\sqrt 3 } \over 2}\cr& \Rightarrow \sin {15^0} = \sqrt {{{2 - \sqrt 3 } \over 4}}\cr & = \sqrt {\frac{{4 - 2\sqrt 3 }}{8}}  = \frac{{\sqrt 3  - 1}}{2\sqrt 2} \cr 
& \tan {15^0} = \sqrt {{{2 - \sqrt 3 } \over {2 + \sqrt 3 }}} = 2 - \sqrt 3 \cr 
& \cot {15^0} = 2 + \sqrt 3 \cr} \)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close