Bài 40 trang 109 SGK Hình học 10 Nâng cao

Chứng minh rằng tích các khoảng cách từ một điểm bất kì thuộc hypebol đến hai đường tiệm cận của nó là một số không đổi.

Quảng cáo

Đề bài

Chứng minh rằng tích các khoảng cách từ một điểm bất kì thuộc hypebol đến hai đường tiệm cận của nó là một số không đổi.

Phương pháp giải - Xem chi tiết

Các đường tiệm cận của Hypebol \(y =  \pm \frac{b}{a}x\)

Khoảng cách từ điểm \(M\left( {{x_0};{y_0}} \right)\) đến đường thẳng \(Ax + By + C = 0\) là:

\(\frac{{\left| {A{x_0} + B{y_0} + C} \right|}}{{\sqrt {{A^2} + {B^2}} }}\)

Lời giải chi tiết

Giả sử (H) có phương trình chính tắc là: \({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\)

Phương trình tiệm cận của (H) là: \({d_1}:y = {b \over a}x \Leftrightarrow bx - ay = 0\)

\({d_2}:y =  - {b \over a}x \Leftrightarrow bx + ay = 0\)

Gọi \(M\left( {{x_0};{y_0}} \right) \in (H)\) ta có: \({{x_0^2} \over {{a^2}}} - {{y_0^2} \over {{b^2}}} = 1 \Leftrightarrow {b^2}x_0^2 - {a^2}y_0^2 = {a^2}{b^2}\)

Ta có: \(d\left( {M,{d_1}} \right).d\left( {M,{d_2}} \right) = {{|b{x_0} - a{y_0}|} \over {\sqrt {{a^2} + {b^2}} }}.{{|b{x_0} + a{y_0}|} \over {\sqrt {{a^2} + {b^2}} }} \)

\(= {{|{b^2}x_0^2 - {a^2}y_0^2|} \over {{a^2} + {b^2}}}\) \( = {{{a^2}{b^2}} \over {{a^2} + {b^2}}}\) không đổi

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close