Bài 34 trang 31 SGK Hình học 10 Nâng cao

Trong mặt phẳng tọa độ, cho ba điểm

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Trong mặt phẳng tọa độ, cho ba điểm \(A( - 3;4)\,,\,B(1;1)\,,\,C(9; - 5).\)

LG a

Chứng minh ba điểm \(A, B, C\) thẳng hàng.

Lời giải chi tiết:

Ta có

\(\,\,\,\left. \matrix{
\overrightarrow {AB} = (1 + 3\,;\,1 - 4) = (4\,;\, - 3) \hfill \cr 
\overrightarrow {AC} = (9 + 3\,;\, - 5 - 4) = (12\,;\, - 9) \hfill \cr} \right\}\)

\(\Rightarrow \,\overrightarrow {AC} \, = 3\overrightarrow {AB} \)

Vậy ba điểm \(A, B, C\) thẳng hàng.

LG b

Tìm tọa độ điểm \(D\) sao cho \(A\) là trung điểm của \(BD\).

Lời giải chi tiết:

Gọi \(D\,({x_D}\,;\,{y_D})\). Do \(A\) là trung điểm của \(BD\) nên ta có

\(\left\{ \matrix{
{x_A} = {{{x_B} + {x_D}} \over 2} \hfill \cr 
{y_A} = {{{y_B} + {y_D}} \over 2} \hfill \cr} \right.\,\, \Leftrightarrow \left\{ \matrix{
- 3 = {{1 + {x_D}} \over 2} \hfill \cr 
4 = {{1 + {y_D}} \over 2} \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
{x_D} = - 7 \hfill \cr 
{y_D} = 7 \hfill \cr} \right.\)

Vậy \(D( - 7\,;\,7)\).

LG c

Tìm tọa độ điểm \(E\) trên trục \(Ox\) sao cho \(A, B, E\) thẳng hàng.

Lời giải chi tiết:

Gọi \(E\,({x_E}\,;\,0)\) trên trục \(Ox\) sao cho \(A, B, E\) thẳng hàng.

Do đó có số \(k\) thỏa mãn \(\overrightarrow {AE}  = k\overrightarrow {AB} \)

\(\eqalign{
& \overrightarrow {AB} = \left( {4\,;\, - 3} \right)\,;\cr&\overrightarrow {AE} = \left( {{x_E} + 3\,;\, - 4} \right) \cr 
& \Rightarrow \,\,\left\{ \matrix{
{x_E} + 3 = 4k \hfill \cr 
- 4 = - 3k \hfill \cr} \right. \Rightarrow \,\left\{ \matrix{
k = {4 \over 3} \hfill \cr 
{x_E} = {7 \over 3} \hfill \cr} \right.\cr&\Rightarrow \,E\,\left( {{7 \over 3}\,;\,0} \right)\, \cr} \)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close