Bài 30 trang 31 SGK Hình học 10 Nâng cao

Tìm tọa độ của các vectơ sau trong mặt phẳng tọa độ

Quảng cáo

Đề bài

Tìm tọa độ của các vectơ sau trong mặt phẳng tọa độ

\(\eqalign{
& \overrightarrow a = - \overrightarrow i ;\,\,\,\overrightarrow b = 5\overrightarrow j ;\,\,\,\overrightarrow c = 3\overrightarrow i - 4\overrightarrow j \cr 
& \overrightarrow d = {1 \over 2}(\overrightarrow j - \overrightarrow i)\,;\,\,\,\overrightarrow e = 0,15\overrightarrow i \,\, + 1,3\overrightarrow {j} \cr&\overrightarrow f = \pi \overrightarrow i - (\cos {24^0})\overrightarrow {j}\cr} \)

Phương pháp giải - Xem chi tiết

Sử dụng lí thuyết: \(\overrightarrow a  = (x,\,y)\,\, \Rightarrow \,\overrightarrow a  = x\overrightarrow i  + y\overrightarrow j \)

Lời giải chi tiết

\(\begin{array}{l}
\overrightarrow a = - \overrightarrow i = \left( { - 1} \right)\overrightarrow i + 0\overrightarrow j \\
\Rightarrow \overrightarrow a = \left( { - 1;0} \right)\\
\overrightarrow b = 5\overrightarrow j = 0\overrightarrow i + 5\overrightarrow j \\
\Rightarrow \overrightarrow b = \left( {0;5} \right)\\
\overrightarrow c = 3\overrightarrow i - 4\overrightarrow j = 3\overrightarrow i + \left( { - 4} \right)\overrightarrow j \\
\Rightarrow \overrightarrow c = \left( {3; - 4} \right)\\
\overrightarrow d = \frac{1}{2}\left( {\overrightarrow j - \overrightarrow i } \right) = \frac{1}{2}\overrightarrow j - \frac{1}{2}\overrightarrow i \\
= \left( { - \frac{1}{2}} \right)\overrightarrow i + \frac{1}{2}\overrightarrow j \\
\Rightarrow \overrightarrow d = \left( { - \frac{1}{2};\frac{1}{2}} \right)\\
\overrightarrow e = 0,15\overrightarrow i + 1,3\overrightarrow j \\
\Rightarrow \overrightarrow e = \left( {0,15;1,3} \right)\\
\overrightarrow f = \pi \overrightarrow i - \cos {24^0}\overrightarrow j \\
= \pi \overrightarrow i + \left( { - \cos {{24}^0}} \right)\overrightarrow j \\
\Rightarrow \overrightarrow f = \left( {\pi ; - \cos {{24}^0}} \right)
\end{array}\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close