Bài 30 Trang 172 SGK Đại số và Giải tích 12 Nâng caoTính thể tích của vật thể nằm giữa hai mặt phẳng x = 0 và , biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là một hình vuông cạnh . Quảng cáo
Đề bài Tính thể tích của vật thể nằm giữa hai mặt phẳng \(x = 0\) và \(x = \pi \), biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\;(0 \le x \le \pi )\) là một tam giác đều cạnh \(2\sqrt {{\mathop{\rm s}\nolimits} {\rm{inx}}} \). Phương pháp giải - Xem chi tiết Sử dụng công thức \(V = \int\limits_a^b {{S}\left( x \right)dx} \). Diện tích tam giác đều cạnh a là \(S = \dfrac{1}{2}a.a.\sin {60^0} = \dfrac{{{a^2}\sqrt 3 }}{4}\) Lời giải chi tiết Ta có: \(S\left( x \right) = \dfrac{1}{2}.2\sqrt {\sin x} .2\sqrt {\sin x} .\sin {60^0}\) \( = \sqrt 3 \sin x\) Do đó: \(V = \int\limits_0^\pi {S(x)dx = \int\limits_0^\pi {\sqrt 3 } } \sin {\rm{x}}dx\) \( = - \sqrt 3 \cos x\mathop |\nolimits_0^\pi = 2\sqrt 3 \) Loigiaihay.com
Quảng cáo
|