Bài 3 trang 179 SGK Đại số và Giải tích 11

Giải các phương trình

Quảng cáo

Đề bài

Giải các phương trình

a) \(2\sin {x \over 2}{\cos ^2}x - 2\sin {x \over 2}{\sin ^2}x = {\cos ^2}x - {\sin ^2}x\)

b) \(3\cos x + 4\sin x = 5\)

c) \(\sin x + \cos x = 1 + \sin x. \cos x\)

d) \(\sqrt {1 - \cos x}  = \sin x(x \in \left[ {\pi ,3\pi } \right])\)

e) \((\cos{x \over 4} - 3\sin x)\sin x + (1 + \sin{x \over 4} - 3\cos x)\cos x\)\( = 0\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Đưa phương trình về dạng tích, giải phương trình lượng giác cơ bản.

b) Chia cả hai vế cho \(\sqrt {{a^2} + {b^2}} \).

c) Đưa phương trình về dạng tích, giải phương trình lượng giác cơ bản.

d) Bình phương hai vế, đưa phương trình về dạng phương trình bậc hai đối với một hàm số lượng giác.

e) Phá ngoặc và nhóm các hạng tử phù hợp.

Lời giải chi tiết

a)

\(\eqalign{
& 2\sin {x \over 2}{\cos ^2}x - 2\sin {x \over 2}{\sin ^2}x = {\cos ^2}x - {\sin ^2}x \cr 
& \Leftrightarrow 2\sin {x \over 2}({\cos ^2}x - {\sin ^2}x) = {\cos ^2}x - {\sin ^2}x \cr 
& \Leftrightarrow 2\sin {x \over 2}.cos2x = \cos 2x\cr& \Leftrightarrow \cos 2x(2\sin {x \over 2} - 1) = 0 \cr 
& \Leftrightarrow \left[ \matrix{
\cos 2x = 0 \hfill \cr 
\sin {x \over 2} = {1 \over 2} = \sin {\pi \over 6} \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
2x = {\pi \over 2} + k\pi \hfill \cr 
\left[ \matrix{
{x \over 2} = {\pi \over 6} + k2\pi \hfill \cr 
{x \over 2} = \pi - {\pi \over 6} + k2\pi \hfill \cr} \right. \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x = {\pi \over 4} + \frac{k\pi}{2} \hfill \cr 
x = {\pi \over 3} + k4\pi \hfill \cr 
x = {{5\pi } \over 3} + k4\pi \hfill \cr} \right.(k \in\mathbb Z) \cr} \)

 b) Ta có: 

\(\eqalign{
& 3cos{\rm{ }}x + 4sin{\rm{ }}x = 5 \cr 
& \Leftrightarrow {3 \over 5}\cos x + {4 \over 5}\sin x = 1 \cr 
& \Leftrightarrow \cos x\cos \varphi + \sin x\sin \varphi = 1\cr&(\text { với }cos\varphi = {3 \over 5};\sin \varphi = {4 \over 5}) \cr 
& \Leftrightarrow \cos (x - \varphi ) = 1 \cr 
& \Leftrightarrow x - \varphi = k2\pi \,\,\,(k \in\mathbb Z) \cr 
& \Leftrightarrow x = \varphi + k2\pi \,\,\,(k \in\mathbb Z)\cr} \)

\(c) \,\,sin x + cosx = 1 + sinx. cosx\)

\(⇔ sin x – sin x. cosx + cosx – 1= 0\)

\(⇔ sin x ( 1 – cosx) – (1 – cosx) = 0\)

\(\eqalign{
& \Leftrightarrow (1 - \cos x)(\sin x - 1) = 0 \cr 
& \Leftrightarrow \left[ \matrix{
{\mathop{\rm cosx}\nolimits} = 1 \hfill \cr 
sinx = 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x = k2\pi \hfill \cr 
x = {\pi \over 2} + k2\pi \hfill \cr} \right.(k \in \mathbb Z) \cr} \)

d) Điều kiện \(\sin x ≥ 0\). Khi đó:

\(\eqalign{
& \sqrt {1 - \cos x} = \sin x \cr 
& \Leftrightarrow 1-\cos x = {\sin ^2}x \cr 
& \Leftrightarrow 1 - {\sin ^2}x - \cos x = 0 \cr 
& \Leftrightarrow {\cos ^2}x - \cos x = 0 \cr 
& \Leftrightarrow \cos x(cosx - 1) = 0 \cr 
& \Leftrightarrow \left[ \matrix{
\cos x = 0 \hfill \cr 
\cos x = 1 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = {\pi \over 2} + k\pi \hfill \cr 
x = k2\pi \hfill \cr} \right.;k \in\mathbb Z \cr}\)

\(\begin{array}{l}
\pi \le \frac{\pi }{2} + k\pi \le 3\pi \\ \Leftrightarrow \frac{1}{2} \le k \le \frac{5}{2} \\ \mathop \Rightarrow \limits^{k \in Z} \left[ \begin{array}{l}
k = 1 \Rightarrow x = \frac{{3\pi }}{2}\,\,\left( {ktm\,\,\sin x \ge 0} \right)\\
k = 2\,\,\left( {tm} \right)
\end{array} \right.\\
\pi \le k2\pi \le 3\pi \\ \Leftrightarrow \frac{1}{2} \le k \le \frac{3}{2}\mathop \Rightarrow \limits^{k \in Z} k = 1 \Rightarrow x = 2\pi \,\,\left( {tm} \right)
\end{array}\)

Vì \(\sin \frac{{5x}}{4} \le 1;\,\,\cos x \le 1 \Rightarrow \sin \frac{{5x}}{4} + \cos x \le 2 < 3 \Rightarrow \) phương trình trên vô nghiệm.

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close