Cho (fleft( x right)) là hàm số liên tục trên đoạn (left[ {a;b} right]). Giả sử (Fleft( x right),Gleft( x right)) là các nguyên hàm của (fleft( x right)) trên đoạn (left[ {a;b} right]). Trong các phát biểu sau, phát biểu nào sai? A. (Fleft( a right) - Fleft( b right) = Gleft( a right) - Gleft( b right)). B. (intlimits_a^b {fleft( x right)dx} = Fleft( b right) - Fleft( a right)). C. (intlimits_a^b {fleft( x right)dx} = fleft( b right) - fleft(
Xem lời giảiPhát biểu nào sau đây là đúng? A. (intlimits_a^b {{x^alpha }dx} = {b^{alpha + 1}} - {a^{alpha + 1}}). B. (intlimits_a^b {{x^alpha }dx} = alpha left( {{b^{alpha - 1}} - {a^{alpha - 1}}} right)). C. (intlimits_a^b {{x^alpha }dx} = frac{{{b^{alpha + 1}} - {a^{alpha + 1}}}}{{alpha + 1}}left( {alpha ne - 1} right)). D. (intlimits_a^b {{x^alpha }dx} = frac{{{b^{alpha + 1}} - {a^{alpha + 1}}}}{alpha }left( {alpha ne 0} right)).
Xem lời giảiPhát biểu nào sau đây là đúng? A. (intlimits_a^b {sin xdx} = sin a - sin b). B. (intlimits_a^b {sin xdx} = sin b - sin a). C. (intlimits_a^b {sin xdx} = cos a - cos b). D. (intlimits_a^b {sin xdx} = cos b - cos a).
Xem lời giảiPhát biểu nào sau đây là đúng? Biết (fleft( x right) = frac{1}{{{{sin }^2}x}}) liên tục trên (left[ {a;b} right]). A. (intlimits_a^b {frac{1}{{{{sin }^2}x}}dx} = cot a - cot b). B. (intlimits_a^b {frac{1}{{{{sin }^2}x}}dx} = cot b - cot a). C. (intlimits_a^b {frac{1}{{{{sin }^2}x}}dx} = tan a - tan b). D. (intlimits_a^b {frac{1}{{{{sin }^2}x}}dx} = tan b - tan a).
Xem lời giảiPhát biểu nào sau đây là đúng? A. (intlimits_a^b {{e^x}dx} = {e^{b + 1}} - {e^{a + 1}}). B. (intlimits_a^b {{e^x}dx} = {e^{a + 1}} - {e^{b + 1}}). C. (intlimits_a^b {{e^x}dx} = {e^b} - {e^a}). D. (intlimits_a^b {{e^x}dx} = {e^a} - {e^b}).
Xem lời giảiTích phân (intlimits_a^b {frac{1}{x}dx} ) bằng: A. (ln b - ln a). B. (left| {ln b} right| - left| {ln a} right|). C. (ln left| b right| - ln left| a right|). D. (ln left| a right| - ln left| b right|).
Xem lời giảiTích phân (intlimits_1^2 {frac{{ - 3}}{{{x^3}}}dx} ) có giá trị bằng: A. (frac{9}{8}). B. ( - frac{{45}}{{64}}). C. (frac{{15}}{8}). D. ( - frac{9}{8}).
Xem lời giảiTích phân (intlimits_1^2 {frac{1}{{xsqrt x }}dx} ) có giá trị bằng: A. (2 - sqrt 2 ). B. (2 + sqrt 2 ). C. (frac{{ - sqrt 2 + 8}}{{20}}). D. (frac{{ - sqrt 2 - 8}}{{20}}).
Xem lời giảiNếu (intlimits_0^1 {fleft( x right)dx} = 4) thì (intlimits_0^1 {2fleft( x right)dx} ) bằng: A. 16. B. 4. C. 2. D. 8.
Xem lời giảiNếu (intlimits_1^2 {fleft( x right)dx} = - 2) và (intlimits_2^3 {fleft( x right)dx} = 1) thì (intlimits_1^3 {fleft( x right)dx} ) bằng: A. ‒3. B. ‒1. C. 1. D. 3.
Xem lời giải