Bài 28 trang 66 SGK Hình học 10 nâng cao

Chứng minh rằng tam giác ABC vuông ở A

Quảng cáo

Đề bài

Chứng minh rằng tam giác \(ABC\) vuông ở \(A\) khi và chỉ khi \(5m_a^2 = m_b^2 + m_c^2\).

Phương pháp giải - Xem chi tiết

Từ đẳng thức đã cho, thay thế độ dài trung tuyến bởi công thức gồm các cạnh tam giác. Biến đổi tương đương để chứng tỏ các cạnh thoả mãn định lí Pytago.

Lời giải chi tiết

Áp dụng công thức đường trung tuyến ta có:

\(\begin{array}{l}
5m_a^2 = m_b^2 + m_c^2\\
\Leftrightarrow 5.\left( {\frac{{{b^2} + {c^2}}}{2} - \frac{{{a^2}}}{4}} \right)\\
= \frac{{{c^2} + {a^2}}}{2} - \frac{{{b^2}}}{4} + \frac{{{a^2} + {b^2}}}{2} - \frac{{{c^2}}}{4}\\
\Leftrightarrow 5.\frac{{2\left( {{b^2} + {c^2}} \right) - {a^2}}}{4}\\
= \frac{{2\left( {{c^2} + {a^2}} \right) - {b^2}}}{4} + \frac{{2\left( {{a^2} + {b^2}} \right) - {c^2}}}{4}\\
\Leftrightarrow 10\left( {{b^2} + {c^2}} \right) - 5{a^2}\\
= 2\left( {{c^2} + {a^2}} \right) - {b^2} + 2\left( {{a^2} + {b^2}} \right) - {c^2}\\
\Leftrightarrow 10{b^2} + 10{c^2} - 5{a^2}\\
= 2{c^2} + 2{a^2} - {b^2} + 2{a^2} + 2{b^2} - {c^2}\\
\Leftrightarrow 9{b^2} + 9{c^2} - 9{a^2} = 0\\
\Leftrightarrow {b^2} + {c^2} - {a^2} = 0\\
\Leftrightarrow {b^2} + {c^2} = {a^2}
\end{array}\)

\( \Leftrightarrow \)  Tam giác \(ABC\) vuông ở \(A\).

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close