Bài 27 trang 29 Vở bài tập toán 9 tập 2Giải Bài 27 trang 29 VBT toán 9 tập 2. Nhà Lan có một mảnh vườn trồng rau bắp cải. Vườn được đánh thành nhiều luống, mỗi luống trồng cùng một số rau cải bắp. Lan tính rằng: nếu tăng thêm 8 luống rau nhưng mỗi luống trồng ít đi 3 cây... Quảng cáo
Đề bài Nhà Lan có một mảnh vườn trồng rau cải bắp. Vườn được đánh thành nhiều luống, mỗi luống trồng cùng một số rau cải bắp. Lan tính rằng: nếu tăng thêm 8 luống rau nhưng mỗi luống trồng ít đi 3 cây thì số cây rau toàn vườn ít đi 54 cây; Nếu giảm đi 4 luống, nhưng mỗi luống trồng tăng thêm 2 cây thì số rau toàn vườn sẽ tăng thêm 32 cây. Hỏi vườn nhà Lan trồng bao nhiêu câu rau cải bắp ? Phương pháp giải - Xem chi tiết Bước 1. Lập hệ phương trình: - Chọn các ẩn số và đặt điều kiện thích hợp cho các ẩn số; - Biểu diễn các đại lượng chưa biết theo các ẩn và các đại lượng đã biết; -Lập hệ phương trình biểu thị mối quan hệ giữa các đại lượng Bước 2. Giải hệ phương trình vừa thu được. Bước 3. Kết luận -Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thỏa mãn điều kiện của ẩn. - Kết luận bài toán. Lời giải chi tiết Gọi \(x\) là số luống và \(y\) là số cây cải bắp trên mỗi luống. Điều kiện: \(x > 4;y > 3;x,y \in N\). Khi đó số cây cải bắp ban đầu có trong vườn là \(N = xy\) (cây) Nếu tăng thêm 8 luống rau, nhưng mỗi luống trồng ít đi 3 cây thì số cây rau trong vườn sẽ là \(\left( {x + 8} \right)\left( {y - 3} \right)\) cây, lúc này số cây ít hơn 54 cây so với N. Điều đó được thể hiện bởi phương trình \(\left( {x + 8} \right)\left( {y - 3} \right) + 54 = xy\) Nếu giảm đi 4 luống rau, nhưng mỗi luống trồng tăng thêm 2 cây thì số cây rau trong vườn sẽ là \(\left( {x - 4} \right)\left( {y + 2} \right)\) cây, lúc này số cây tăng thêm 32 cây so với N. Điều đó được thể hiện bởi phương trình \(\left( {x - 4} \right)\left( {y + 2} \right) - 32 = xy\) Ta có hệ phương trình \(\left\{ \begin{array}{l}\left( {x + 8} \right)\left( {y - 3} \right) + 54 = xy\\\left( {x - 4} \right)\left( {y + 2} \right) - 32 = xy\end{array} \right.\) , thu gọn là \(\left\{ \begin{array}{l} - 3x + 8y + 30 = 0\\2x - 4y - 40 = 0\end{array} \right.\) Ta giải hệ phương trình bằng phương pháp cộng đại số: \(\begin{array}{l}\left\{ \begin{array}{l} - 3x + 8y + 30 = 0\\2x - 4y - 40 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 3x + 8y + 30 = 0\\4x - 8y - 80 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 3x + 8y + 30 = 0\\x - 50 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 50\\ - 3.50 + 8y + 30 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 50\\8y = 120\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 50\\y = 15\end{array} \right.\left( {tm} \right)\end{array}\) Trả lời: Vậy số cây cải trong vườn ban đầu là \(15.50 = 750\) cây. Loigiaihay.com
Quảng cáo
|