Bài 27 trang 29 Vở bài tập toán 9 tập 2

Giải Bài 27 trang 29 VBT toán 9 tập 2. Nhà Lan có một mảnh vườn trồng rau bắp cải. Vườn được đánh thành nhiều luống, mỗi luống trồng cùng một số rau cải bắp. Lan tính rằng: nếu tăng thêm 8 luống rau nhưng mỗi luống trồng ít đi 3 cây...

Quảng cáo

Đề bài

Nhà Lan có một mảnh vườn trồng rau cải bắp. Vườn được đánh thành nhiều luống, mỗi luống trồng cùng một số rau cải bắp. Lan tính rằng: nếu tăng thêm 8 luống rau nhưng mỗi luống trồng ít đi 3 cây thì số cây rau toàn vườn ít đi 54 cây; Nếu giảm đi 4 luống, nhưng mỗi luống trồng tăng thêm 2 cây thì số rau toàn vườn sẽ tăng thêm 32 cây. Hỏi vườn nhà Lan trồng bao nhiêu câu rau cải bắp ?

Phương pháp giải - Xem chi tiết

Bước 1. Lập hệ phương trình:

- Chọn các ẩn số và đặt điều kiện thích hợp cho các ẩn số;

- Biểu diễn các đại lượng chưa biết theo các ẩn và các đại lượng đã biết;

-Lập hệ phương trình biểu thị mối quan hệ giữa các đại lượng

Bước 2. Giải hệ phương trình vừa thu được.

Bước 3. Kết luận

-Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thỏa mãn điều kiện của ẩn.

- Kết luận bài toán.

Lời giải chi tiết

Gọi \(x\) là số luống và \(y\) là số cây cải bắp trên mỗi luống. Điều kiện: \(x > 4;y > 3;x,y \in N\).

Khi đó số cây cải bắp ban đầu có trong vườn là \(N = xy\) (cây) 

Nếu tăng thêm 8 luống rau, nhưng mỗi luống trồng ít đi 3 cây thì số cây rau trong vườn sẽ là \(\left( {x + 8} \right)\left( {y - 3} \right)\) cây, lúc này số cây ít hơn 54 cây so với N. Điều đó được thể hiện bởi phương trình \(\left( {x + 8} \right)\left( {y - 3} \right) + 54 = xy\)

Nếu giảm đi 4 luống rau, nhưng mỗi luống trồng tăng thêm 2 cây thì số cây rau trong vườn sẽ là \(\left( {x - 4} \right)\left( {y + 2} \right)\) cây, lúc này số cây tăng thêm 32 cây so với N. Điều đó được thể hiện bởi phương trình \(\left( {x - 4} \right)\left( {y + 2} \right) - 32 = xy\)

Ta có hệ phương trình \(\left\{ \begin{array}{l}\left( {x + 8} \right)\left( {y - 3} \right) + 54 = xy\\\left( {x - 4} \right)\left( {y + 2} \right) - 32 = xy\end{array} \right.\) , thu gọn là \(\left\{ \begin{array}{l} - 3x + 8y + 30 = 0\\2x - 4y - 40 = 0\end{array} \right.\)

Ta giải hệ phương trình bằng phương pháp cộng đại số:

\(\begin{array}{l}\left\{ \begin{array}{l} - 3x + 8y + 30 = 0\\2x - 4y - 40 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 3x + 8y + 30 = 0\\4x - 8y - 80 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 3x + 8y + 30 = 0\\x - 50 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 50\\ - 3.50 + 8y + 30 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 50\\8y = 120\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 50\\y = 15\end{array} \right.\left( {tm} \right)\end{array}\)

Trả lời: Vậy số cây cải trong vườn ban đầu là \(15.50 = 750\) cây.

Loigiaihay.com

  • Bài 28 trang 30 Vở bài tập toán 9 tập 2

    Giải Bài 28 trang 30 VBT toán 9 tập 2. Nếu hai vòi nước cùng chảy vào một bể cạn ...

  • Bài 29 trang 31 Vở bài tập toán 9 tập 2

    Giải Bài 29 trang 31 VBT toán 9 tập 2. Một người mua hai loại hàng và phải trả tổng cộng 2,17 triệu đồng, kể cả thuế gia trị giá tăng (VAT) với mức 10% đối với loại hàng thứ nhất và 8%...

  • Bài 26 trang 28 Vở bài tập toán 9 tập 2

    Giải Bài 26 trang 28 VBT toán 9 tập 2. Hai người thợ cùng làm một công việc trong 16 giờ thì xong. Nếu người thứ nhất làm 3 giờ và người thứ hai làm 6 giờ ...

  • Bài 25 trang 27 Vở bài tập toán 9 tập 2

    Giải Bài 25 trang 27 VBT toán 9 tập 2. Hai vòi nước cùng chảy vào một bể nước cạn (không có nước) thì sau ...

  • Bài 24 trang 27 Vở bài tập toán 9 tập 2

    Giải bài 24 trang 27 VBT toán 9 tập 2. Tính dộ dài hai cạnh góc vuông của một tam giác vuông , biết rằng nếu tăng mỗi cạnh lên 3 dm thì diện tích tam giác sẽ tăng thêm 36 cm2. Và mếu một cạnh giảm đi 2 cm, cạnh kia giảm đi 4 cm thì diện tích tam giác giảm đi 26 cm2...

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close