Bài 22 trang 28 SGK Hình học 12 Nâng cao

Cho khối lăng trụ tam giác đều ABC.A'B’C. Gọi M là trung điểm của AA’. Mặt phẳng đi qua M, B’, C chia khối lăng trụ thành hai phần. Tính tỉ số thể tích của hai phần đó.

Quảng cáo

Đề bài

Cho khối lăng trụ tam giác đều ABC.ABC. Gọi M là trung điểm của AA. Mặt phẳng đi qua M,B,C chia khối lăng trụ thành hai phần. Tính tỉ số thể tích của hai phần đó.

Phương pháp giải - Xem chi tiết

+) Tính thể tích khối chóp C.ABB'M.

- Kẻ đường cao CH của tam giác ABC.

- Chứng minh CH(ABBM).

- Tính thể tích khối chóp V=13Sh

+) Tính thể tích khối lăng trụ ABC.A'B'C'.

V=Bh

+) Tính thể tích khối đa diện còn lại và suy ra tỉ số.

Lời giải chi tiết

Gọi độ dài cạnh đáy của lăng trụ là a, độ dài cạnh bên của lăng trụ là b.
Kẻ đường cao CH của tam giác ABC.

Ta có:

{CHABCHAA(AA(ABC)) CH(ABBA)

CH(ABBM).

VC.ABBM=13CH.SABBM

+) CH=AC2AH2 =a2(a2)2=a32

+) Diện tích hình thang ABBM là: SABBM=12(AM+BB)AB =12(b2+b).a=3ab4

Thể tích khối chóp C.ABBM là: VC.ABBM=13SABBM.CH =133ab4.a32=a2b38

Lại có SABC=12CH.AB=12.a32.a=a234

Vậy thể tích khối lăng trụ là: VABC.ABC=SABC.AA =a234.b=a2b34

VCCABM=VABC.ABCVC.ABBM=a2b34a2b38=a2b38VC.ABBMVCCABM=1

Chú ý: Có thể chứng minh được hai khối chóp C.ABBMBACCM có cùng chiều cao và có diện tích đáy bằng nhau nên chúng có thể tích bằng nhau.

Cách khác:

Gọi V, S, h lần lượt là thể tích và diện tích đáy, chiều cao của lăng trụ: V= S.h. V1,V2 lần lượt là thể tích phần lăng trụ bên trên, bên dưới thiết diện MB’C

E = CM ∩ C'A', do M là trung điểm của AA’ nên A’E = A’C’

SΔEA'B'=SΔA'B'C' =S

Ta có:

Loigiaihay.com

  • Bài 23 trang 29 SGK Hình học 12 Nâng cao

    Cho khối chóp tam giác S.ABC. Trên ba đường thẳng SA, SB,SC lần lượt lấy ba điểm A’, B’, C' khác với S. Gọi V và V’ lần lượt là thể tích của các khối chóp S.ABC và S.A'B'C'. Chứng minh rằng:

  • Bài 24 trang 29 SKG Hình học 12 Nâng cao

    Khối chóp S.ABCD có đáy là hình bình hành, M là trung điểm của cạnh SC. Mặt phẳng (P) đi qua AM, song song với BD chia khối chóp thành hai phần. Tính tỉ số thể tích cùa hai phần đó.

  • Bài 25 trang 29 SGK Hình học 12 Nâng cao

    Chứng minh rằng nếu có phép vị tự tỉ số k biến tứ diện ABCD thành tứ diện A’B’C’D’ thì

  • Bài 21 trang 28 SGK Hình học 12 Nâng cao

    Cho điểm M nằm trong hình tứ diện đều ABCD. Chứng minh rằng tổng các khoảng cách từ M tới bốn mặt của hình tứ diện là một số không phụ thuộc vào vị trí của điểm M. Tổng đó bằng bao nhiêu nếu cạnh của tứ diện đều bằng a ?

  • Bài 20 trang 28 SGK Hình học 12 Nâng cao

    Cho khối lăng trụ tam giác ABC.A'B'C' có đáy là tam giác đều cạnh a, điểm A' cách đều ba điểm A, B, c, cạnh bên AA' tạo với mặt phẳng đáy một góc 60°. a) Tính thể tích của khối lăng trụ đó. b) Chứng minh rằng mặt bên BCCB' là một hình chữ nhật. c) Tính tổng diện tích các mặt bên của hình lăng trụ ABC.A'B'C (tổng đó gọi là diện tích xung quanh của hình (hoặc khối) lăng trụ đã cho).

Quảng cáo

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD - Click xem ngay) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close