Bài 2 trang 43 SGK Hình học 10 nâng cao

Đơn giản các biểu thức

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Đơn giản các biểu thức

LG a

\(\sin {100^0} + \sin {80^0} + \cos {16^0} + \cos {164^0}\)

Phương pháp giải:

Sử dụng công thức:

\(\begin{array}{l}
\sin \left( {{{180}^0} - \alpha } \right) = \sin \alpha \\
\cos \left( {{{180}^0} - \alpha } \right) = - \cos \alpha \\
\tan \left( {{{180}^0} - \alpha } \right) = - \tan \alpha \\
\cot \left( {{{180}^0} - \alpha } \right) = - \cot \alpha
\end{array}\)

Lời giải chi tiết:

Ta có

\(\eqalign{
& \sin {100^0} = \sin ({180^0} - {80^0}) = \sin {80^0};\cr&\cos {164^0} = \cos ({180^0} - {16^0}) = - \cos {16^0} \cr 
& \Rightarrow \sin {100^0} + \sin {80^0} + \cos {16^0} + \cos {164^0} \cr 
&  = \,\sin {80^0} + \sin {80^0} + \cos {16^0} - \cos {16^0} \cr 
&  = 2\sin {80^0}. \cr} \)

LG b

\(2\sin ({180^0} - \alpha )\cot \alpha\)\(  - \cos ({180^0} - \alpha )\tan \alpha \cot ({180^0} - \alpha )\) với \({0^0} < \alpha  < {90^0}\).

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
\sin \left( {{{180}^0} - \alpha } \right) = \sin \alpha \\
\cos \left( {{{180}^0} - \alpha } \right) = - \cos \alpha \\
\cot \left( {{{180}^0} - \alpha } \right) = - \cot \alpha
\end{array}\)

Do đó,

\(\eqalign{
& 2\sin ({180^0} - \alpha )\cot \alpha - \cos ({180^0} - \alpha )\tan \alpha \cot ({180^0} - \alpha ) \cr 
& = 2\sin \alpha \cot \alpha  + \cos \alpha \tan \alpha .\left( { - \cot \alpha } \right)\cr&= 2\sin \alpha {{\cos \alpha } \over {\sin \alpha }} - \cos \alpha {{\sin \alpha } \over {\cos \alpha }}{{\cos \alpha } \over {\sin \alpha }} \cr 
& = 2\cos \alpha - \cos \alpha \cr 
& = \cos \alpha . \cr} \)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close