Bài 18 trang 65 SGK Hình học 10 nâng cao

Cho tam giác ABC. Chứng minh các khẳng định sau

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác \(ABC\). Chứng minh các khẳng định sau

LG a

Góc \(A\) nhọn khi và chỉ khi \({a^2} < {b^2} + {c^2}\)

Phương pháp giải:

Sử dụng công thức \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)

Lời giải chi tiết:

Ta có \(\cos A = {{{b^2} + {c^2} - {a^2}} \over {2bc}}\)

\(A\) nhọn \( \Leftrightarrow \cos A > 0\)

\( \Leftrightarrow \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} > 0 \Leftrightarrow {b^2} + {c^2} - {a^2} > 0\)

\(\Leftrightarrow \,\,{b^2} + {c^2} > {a^2}\)

LG b

Góc \(A\) tù khi và chỉ khi \({a^2} > {b^2} + {c^2}\)

Lời giải chi tiết:

\(A\) tù \( \Leftrightarrow \cos A < 0\)

\( \Leftrightarrow \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} < 0 \Leftrightarrow {b^2} + {c^2} - {a^2} < 0\)

\(\Leftrightarrow \,\,{b^2} + {c^2} < {a^2}\)

LG c

Góc \(A\) vuông khi và chỉ khi \({a^2} = {b^2} + {c^2}\)

Lời giải chi tiết:

\(A\) vuông \( \Leftrightarrow \,\,\cos A = 0\)

\( \Leftrightarrow \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = 0 \Leftrightarrow {b^2} + {c^2} - {a^2} = 0\)

\(\Leftrightarrow \,\,{b^2} + {c^2} = {a^2}\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close