Bài 15 trang 17 SGK Đại số và Giải tích 12 Nâng cao

Chứng minh rằng với mọi giá trị của m, hàm số luôn có cực đại và cực tiểu

Quảng cáo

Đề bài

Chứng minh rằng với mọi giá trị của \(m\), hàm số: \(y = {{{x^2} - m\left( {m + 1} \right)x + {m^3} + 1} \over {x - m}}\) luôn có cực đại và cực tiểu.

Lời giải chi tiết

TXĐ: \(D = {\mathbb{R}}\backslash \left\{ m \right\}\)

Với mọi giá trị của \(m\), hàm số đạt cực đại tại điểm \(x=m-1\) và đạt cực tiểu tại điểm \(x=m+1\)

Chú ý:

Ta có thể viết lại hàm số f(x) để tính đạo hàm cho đơn giản như sau:

\(\begin{array}{l}
y = \frac{{{x^2} - m\left( {m + 1} \right)x + {m^3} + 1}}{{x - m}}\\
= \frac{{{x^2} - {m^2}x - mx + {m^3} + 1}}{{x - m}}\\
= \frac{{\left( {{x^2} - mx} \right) - \left( {{m^2}x - {m^3}} \right) + 1}}{{x - m}}\\
= \frac{{x\left( {x - m} \right) - {m^2}\left( {x - m} \right) + 1}}{{x - m}}\\
= \frac{{x\left( {x - m} \right)}}{{x - m}} - \frac{{{m^2}\left( {x - m} \right)}}{{x - m}} + \frac{1}{{x - m}}\\
= x - {m^2} + \frac{1}{{x - m}}\\
y' = \left( {x - {m^2} + \frac{1}{{x - m}}} \right)'\\
= 1 - 0 - \frac{1}{{{{\left( {x - m} \right)}^2}}}\\
= 1 - \frac{1}{{{{\left( {x - m} \right)}^2}}}\\
y' = 0 \Leftrightarrow 1 - \frac{1}{{{{\left( {x - m} \right)}^2}}} = 0\\
\Leftrightarrow 1 = \frac{1}{{{{\left( {x - m} \right)}^2}}} \Leftrightarrow {\left( {x - m} \right)^2} = 1\\
\Leftrightarrow \left[ \begin{array}{l}
x - m = 1\\
x - m = - 1
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = m + 1\\
x = m - 1
\end{array} \right.
\end{array}\)

Loigiaihay.com

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close