Chứng minh tam giác vuông có một góc nhọn có tang bằng 1 là tam giác vuông cân.
Xem chi tiếta) Tính các góc của tam giác vuông có một góc nhọn có tang bằng (frac{{sqrt 3 }}{3}). b) Một hình chữ nhật có kích thước 3 và (sqrt 3 ). Tính các góc tạo bởi đường chéo và cạnh của hình chữ nhật đó.
Xem chi tiếtDùng MTCT, hãy tìm tang và côtang của góc nhọn (alpha ) khi (alpha ) lần lượt bằng ({10^o}{,20^0}{,30^o}{,40^o}) (làm tròn đến chữ số thập phân thứ ba).
Xem chi tiếtTính tang, côtang của góc kề đáy của tam giác cân biết cạnh đáy dài 8cm, đường cao ứng với đáy dài 5cm.
Xem chi tiếtDùng định nghĩa tỉ số lượng giác sin(alpha ), cos(alpha ), tan(alpha ), cot(alpha ), hãy chứng minh rằng: a) (tanalpha = frac{{sin alpha }}{{cos alpha }},cot alpha = frac{{cos alpha }}{{sin alpha }}); b) (1 + {tan ^2}alpha = frac{1}{{{{cos }^2}alpha }}).
Xem chi tiếtCho góc (alpha ) có (tan alpha = frac{3}{4}). Tính sin(alpha ), cos(alpha ).
Xem chi tiếtVới (alpha < beta < {90^o}), hãy chứng minh rằng: a) (cos alpha > cos beta ) (HD. Sử dụng Ví dụ 5 và bài 4,15); b) (sin alpha < sin beta ) (HD. Sử dụng công thức ({sin ^2}alpha + {cos ^2}alpha = 1)).
Xem chi tiết