Bài 10 trang 14 Vở bài tập toán 9 tập 2

Giải Bài 10 trang 14 VBT toán 9 tập 2.Giải các hệ phương trình sau bằng phương pháp thế...

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giải các hệ phương trình sau bằng phương pháp thế:

LG a

\(\left\{ \begin{array}{l}x - y = 3\\3x - 4y = 2\end{array} \right.\)

Phương pháp giải:

Sử dụng phương pháp thế giải hệ phương trình 

Lời giải chi tiết:

\(\left\{ \begin{array}{l}x - y = 3\\3x - 4y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = y + 3\\3\left( {y + 3} \right) - 4y = 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = y + 3\\-y = -7\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = y + 3\\y = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 10\\y = 7\end{array} \right.\)

Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {10;7} \right)\)

LG b

\(\left\{ \begin{array}{l}7x - 3y = 5\\4x + y = 2\end{array} \right.\)

Phương pháp giải:

Sử dụng phương pháp thế giải hệ phương trình 

Lời giải chi tiết:

\(\left\{ \begin{array}{l}7x - 3y = 5\\4x + y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}7x - 3\left( {2 - 4x} \right) = 5\\y = 2 - 4x\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}19x=11\\y = 2 - 4x\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{11}}{{19}}\\y = 2 - 4.\dfrac{{11}}{{19}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{11}}{{19}}\\y =  - \dfrac{6}{{19}}\end{array} \right.\)

Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {\dfrac{{11}}{{19}}; - \dfrac{6}{{19}}} \right)\)

LG c

\(\left\{ \begin{array}{l}x + 3y =  - 2\\5x - 4y = 11\end{array} \right.\)

Phương pháp giải:

Sử dụng phương pháp thế giải hệ phương trình 

Lời giải chi tiết:

\(\left\{ \begin{array}{l}x + 3y =  - 2\\5x - 4y = 11\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 2 - 3y\\5\left( { - 2 - 3y} \right) - 4y = 11\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x =  - 2 - 3y\\-19y =  21\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{25}}{{19}}\\y =  - \dfrac{{21}}{{19}}\end{array} \right.\)

Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {\dfrac{{25}}{{19}}; - \dfrac{{21}}{{19}}} \right)\)

Loigiaihay.com

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close