Bài 15 trang 19 Vở bài tập toán 9 tập 2Giải Bài 15 trang 19 VBT toán 9 tập 2.Biết rằng: Đa thức P(x) chia hết cho đa thức ... Quảng cáo
Đề bài Biết rằng: Đa thức P(x) chia hết cho đa thức x – a khi và chỉ khi P(a) = 0. Hãy tìm các giá trị của m và n sao cho đa thức sau đồng thời chia hết cho x + 1 và x – 3: \(P(x) = m{x^3} + \left( {m - 2} \right){x^2} - (3n - 5)x - 4n\) Phương pháp giải - Xem chi tiết Ta sử dụng: Đa thức \(P\left( x \right)\) chia hết cho đa thức \(x - a\) khi và chỉ khi \(P\left( a \right) = 0\) Tính \(P\left( { - 1} \right);P\left( 3 \right)\) Từ giả thiết ta giải hệ \(\left\{ \begin{array}{l}P\left( { - 1} \right) = 0\\P\left( 3 \right) = 0\end{array} \right.\) để tìm \(m;n.\) Lời giải chi tiết Áp dụng mệnh đề đã cho với \(a = - 1,\) rồi với \(a = 3,\) ta có \(P\left( { - 1} \right) = m{\left( { - 1} \right)^3} + \left( {m - 2} \right).{\left( { - 1} \right)^2} \)\(- \left( {3n - 5} \right).\left( { - 1} \right) - 4n\)\( = - n - 7\) \(P\left( 3 \right) = m{.3^3} + \left( {m - 2} \right){.3^2} - \left( {3n - 5} \right).3 - 4n \)\(= 36m - 13n - 3\) Theo giả thiết, \(P\left( x \right)\) chia hết cho \(x + 1\) nên \(P\left( { - 1} \right) = 0\) tức là \( - n - 7 = 0\) Tương tự, vì \(P\left( x \right)\) chia hết cho \(x - 3\) nên \(P\left( 3 \right) = 0\) tức là \(36m - 13n - 3 = 0\) Vậy ta phải giải hệ phương trình \(\left\{ \begin{array}{l} - n - 7 = 0\\36m - 13n - 3 = 0\end{array} \right.\) Giải hệ phương trình này ta được \(m = - \dfrac{{22}}{9};n = - 7\) Trả lời: Vậy \(m = - \dfrac{{22}}{9};n = - 7\). Chú ý: Ta có thể giải hệ phương trình \(\left\{ \begin{array}{l} - n - 7 = 0\\36m - 13n - 3 = 0\end{array} \right.\) như sau: \(\left\{ \begin{array}{l} - n - 7 = 0\\36m - 13n - 3 = 0\end{array} \right.\) \(\Leftrightarrow \left\{\begin{matrix} n+7 = 0 & & \\ 36m - 13n = 3 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} n = -7 & & \\ 36m -13.(-7)= 3 & & \end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} n = -7 & & \\ 36m = -88 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} n = -7& & \\ m = \dfrac{-22}{9}& & \end{matrix}\right.\) Loigiaihay.com
Quảng cáo
|